Scientific Data Analysis

Mobile Features AB

If you were asked to order or categorise numbers, you might order them in ascending order, or you may group even or large numbers. But numbers are not always that simple. Thus, data and scientific data analysis are not always that simple. Before researchers can go on with their scientific data analysis, they must identify what type of data they are handling. 

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Contents
Contents
  • Fact Checked Content
  • Last Updated: 04.10.2022
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    • We will start by exploring what the data analysis scientific method definition means.
    • Then we will investigate how scientific data collection and analysis are carried out in psychological research.
    • Moving on, we delve into the link between statistics and analysis of scientific data, covering each level of measurement.
    • From this, we will look at data analysis and interpretation, including how interviews, observations and personal records are analysed.
    • Finally, we will look at some scientific data analysis examples.

    Data Analysis Scientific Method Definition

    The purpose of research favouring the scientific method is to either support or disprove a hypothesis. For research to do this, it should collect data and analyse empirical results and use reliable and valid methods.

    The data analysis scientific method definition is a standardised process that accurately and objectively analyses data from research observed in the study (i.e. empirical).

    Standardising procedures, meaning analysing each participant using the same protocol, ensures that the data analysis methods are reliable. The validity of the scientific data analysis can be increased by ensuring that the researcher's subjective opinion concerning the data is limited. Instead, how the data is interpreted should be based on the statistical findings of the research, i.e. it should be evidence-based.

    Scientific Data Collection and Analysis

    How scientific data is collected and analysed depends on multiple factors, e.g. the research method used, the type of data collected, and the type of data output - qualitative or quantitative, the researchers aim to collect.

    In addition, the study's hypothesis also affects scientific data collection and analysis.

    A hypothetical study hypothesised that there is a link between rain and umbrella sales. In this study, a correlational analysis would likely be employed.

    Scientific research that collects quantitative data initially involves identifying the level of the measurement of the data, as this affects later analysis.

    However, qualitative research, like interviews, observations and diaries, has to use different analysis methods to quantitative methods, such as content or thematic analysis.

    Statistics and Analysis of Scientific Data

    The levels of measurement are also known as scales of measurement. Levels of measurement in statistics describe and classify types of variables and how to measure them.

    They are designed to help us understand how to interpret the data, what statistical test to use, and what information the data can give us.

    There are four levels of measurement in psychological research, nominal, ordinal, ratio and interval data. And these can be further divided into two groups: discrete and continuous data.

    Nominal and ordinal data are discrete, meaning that the data can only have a finite number of values. In contrast, continuous data, i.e. interval or ratio data, can have an infinite number of values.

    The nominal level of measurement in psychology consists of 'named' or 'labelled data'.

    An example of a nominal level measurement question is What is your gender? So the answers male, female and other are forms of nominal data.

    The ordinal level of measurement in psychology is categorical data, and the values have a fixed set or order. The order of the data is vital because it shows that one response has a lower/higher value than the other, but we cannot determine how much they quantitively differ. Ordinal data is usually collected from qualitative data.

    An example of a question with ordinal measurement is What is your socioeconomic class? So the ordinal data could be working class, middle class, and upper-class.

    The ratio level of measurement in psychology is a type of data that is classified and ranked; there is a clear difference between one point and the next. It has an absolute value of 0, meaning the numerical values cannot be less than 0.

    Participants' height, age, and travel speed are data that use a ratio measure. Your height cannot be negative, your age cannot be less than 0, and you cannot be travelling at a minus speed.

    Similar to ratio measurement, interval data is a type of data that can be classified and ranked, meaning there is a clear difference between one point and the next. The difference between the two levels of measurement is that interval level data can be less than 0 (0 is not absolute).

    An example of interval data is the temperature which can be recorded at 0 and below.

    Data Analysis and Interpretation

    Case studies use different methods of scientific data collection called triangulation. Because of this, there are several methods that researchers must use for scientific data analysis. The most common data collection methods utilised in case studies are observations, interviews and personal records.

    Observations are usually recorded and analysed by multiple trained professionals. An example of an analysis procedure is tally counting. In this analysis, two or more professionals watch the same video and tally independently how frequently they observe a particular behaviour or pattern.

    The independent tallies are compared, and a correlational analysis is usually conducted. The scientific data analysis has high inter-rater reliability if the results are similar and a high positive correlation is found.

    Semi-unstructured interviews use open-ended and closed-ended questions to obtain quantitative and qualitative data. The analysis involves taking notes from the interview transcripts, which are later categorised by themes; this process is called thematic analysis. Data is usually reported by stating the themes and patterns identified and providing excerpts from the transcript as evidence; this form of analysis provides qualitative data.

    The thematic analysis allows the researcher and the reader to understand the phenomena in depth. Furthermore, it can be classified as a scientific data analysis technique, relying on an evidence-based interpretation of the themes, concepts and patterns.

    Personal records such as diaries and letters provide qualitative information. The technique of scientific data analysis is quite different from that used for quantitative data. This is because statistical data is the simplest and most reliable method of quantitative data interpretation. Statistical analysis can be used in quantified qualitative data; this data transformation is called content analysis.

    Content analysis is an analysis method used to identify words, themes, and concepts in qualitative data, such as diaries, and follows a similar protocol to thematic analysis.

    However, content analysis quantifies words, themes, and concepts to understand their meaning and relationship. The statistical tests used for quantitative data can then be used.

    Scientific Data Analysis Examples

    Now let's put what we have learned into practice.

    What data is collected based on the questions described in the questionnaire?

    Q1. What is your age?

    Q2. On a scale of 1 - 5 (most likely to very unlikely), are you to recommend the app to your friends?

    Q3. How many hours do you spend on social media daily?

    Q1 collects ratio data; Q2 collects ordinal data, and Q3 collects ratio data.

    Scientific Data Analysis - Key takeaways

    • The data analysis scientific method definition is a standardised process that accurately and objectively analyses data from research observed in the study (i.e. empirical).
    • How scientific data is collected and analysed depends on multiple factors, e.g. the research method used, the type of data collected, and the type of data output - qualitative or quantitative, the researchers aim to collect. The study's hypothesis can also affect scientific data collection and analysis.
    • Levels of measurement in statistics describe and classify types of variables and how to measure them. There are four levels of measurement: nominal, ordinal, ratio and interval data.
    • Data analysis and interpretation of case studies depend on the researcher's research method, but some typical analysis techniques are thematic and content analysis.
    Frequently Asked Questions about Scientific Data Analysis

    What is scientific data analysis? 

    A crucial step in conducting research is scientific data analysis. The researcher must find a reliable and valid scientific method to perform the data analysis. The analysis method depends on various factors, such as what is being investigated and the type of data collected. 

    How do you write a scientific data analysis?

    In psychology, scientific data analysis should be written per APA (American Psychological Association) regulations.

    What is data analysis in psychology research?

    The data analysis scientific method definition is a standardised process that accurately and objectively analyses data from research observed in the study (i.e. empirical). 

    Describe briefly the scientific methods to perform data analysis.

    The first step is to identify the level of measurement collected from the data and then analyse the data based on the most appropriate, reliable or valid scientific data analysis method. For example, diaries may be analysed using content analysis.

    Save Article

    Test your knowledge with multiple choice flashcards

    What scientific data analysis method is the most appropriate for personal diaries?

    Can nominal data be considered continuous? 

    What type of data is ordinal?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Psychology Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email