Magnetic Flux Density

Mobile Features AB

We are used to hearing about electric fields and magnetic fieldsHowever, we also hear the term electromagnetic field, which suggests that both fields can be combined. Indeed, electric fields and magnetic fields are not independent but are two sides of the same coin, although, in many examples and applications, this dependence can be neglected.

Get started

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Magnetic Flux Density Teachers

  • 6 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 27.04.2023
  • 6 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 27.04.2023
  • 6 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Although the study of Maxwells laws, which describe the full behaviour of electromagnetism, is without the scope of this article, we briefly mention one aspect, i.e.:

    Whenever an electric current is present in our system, it generates a magnetic field. An electrical current is a collective effect achieved by the movement of charges from one point to another.

    The magnetic flux density is the measure of the strength of the magnetic field. It is a vector field that indicates the direction of the magnetic field acting on a certain region of space. From now on, it will be useful to consider electric currents as the basic objects of magnetic interactions, just as electric charges are the basic objects for electric interactions.

    How is magnetic flux density produced?

    Let us consider an infinitely long straight wire carrying a certain electric current with the intensity of I.

    In the following, we are going to analyse two different settings, which can be mixed up since wires carrying an electric current can create a magnetic flux density and be affected by electric fields in the same way that electric charges can create an electric field and be affected by other electric fields.

    Generation of magnetic flux density with a wire

    For our wire, we directly state the formula of the magnetic flux density it creates:

    \[\vec{B} = \frac{\mu_0 \cdot I}{2 \cdot \pi \cdot r} \cdot \vec{e}_a\]

    Here, vector B is the magnetic flux density, r is the radial distance from the wire, vector ea is the vector twisting around the wire, and μ0 is the vacuum permeability with an approximate value of 1.26⋅10-6 T M/A. A Tesla (T) is a unit defined as kg/s2 A, with A being amperes. The image below shows the field lines for a wire.

    Magnetic flux density. Magnetic field of a wire. StudySmarterFigure 1. Magnetic field B created by a current I flowing through a wire. Source: Stannered, Wikimedia Commons (CC BY-SA 3.0).

    We are defining this field for an infinitely long wire, so it makes sense to consider quantities such as the magnetic flux density since we are only considering a quantity by area rather than a whole quantity defined on an infinite region.

    Experimental definition of magnetic flux density

    Consider again the infinitely long wire with a current I. However, at this point, we are not interested in the magnetic flux density it creates. Instead, we are going to consider the presence of a magnetic flux density that is generated by an external source. We only require this magnetic flux density to be constant in space with a fixed value of B.

    By placing the wire with the current under the influence of the magnetic flux density, a force will affect the wire in the same way an electric field moves an electric charge. However, the rules for this to happen are more complex.

    In general, magnetic fields behave perpendicularly to electric fields. This can be seen in Figure 1, where the magnetic field is perfectly perpendicular to the direction of the current. This general feature is translated to how magnetic fields affect currents.

    To determine the direction in which a magnetic flux density affects a current, we need to use the rule of the right hand, shown in the image below.

    Magnetic Flux Density. Right-hand rule. StudySmarterRight-hand rule for currents and magnetic fields.

    Essentially, the more perpendicular the magnetic flux density is to the current, the more effectively it will affect the wire. The direction of the force exerted is perpendicular to both the field and the current. This also implies that if the current and the magnetic flux density are in the same direction, the current will not suffer any effect at all.

    Supposing the magnetic flux density is perfectly perpendicular to the current, the formula for the force exerted is:

    \[F = I \cdot B \cdot L\]

    Here, L is the length of the wire. If we consider a wire of finite length, the formula makes sense, whereas it does not make sense for an infinitely long wire. This is why we define the magnetic flux density as the force exerted per unit of length for a current of 1 ampere.

    Consider a wire carrying a current of 5·107 A. If we apply the formula for the created field, we find the following radial dependence:

    \(\vec{B}_1 = \frac{\mu_0 \cdot I_1}{2 \cdot \pi \cdot r} \cdot \vec{e}_a = \frac{1}{r} \cdot \vec{e}_a [T]\)

    This means that at 1 metre, the field will have a value of 1 T, while at 2 metres, it will have a value of 0.5 T.

    Now imagine we place another wire parallel to the previous one at a distance of 10 metres. Double the current is flowing through that wire, that is 1⋅108 A. The first wire is 2 metres long, while the second one is 1 metre.

    We can first compute the field created by the second wire, which, applying the formula, is:

    \(\vec{B}_2 = \frac{\mu_0 \cdot I_2}{2 \cdot \pi \cdot r} \cdot \vec{e}_a = \frac{2}{r} \cdot \vec{e}_a [T]\)

    So, if we want to calculate the force exerted by one wire on the other, we simply need to use the formula for the force. In this case, since the wires are parallel, the fields created by them are ensured to be perpendicular to the direction of the current. The application of the formula yields:

    \(F_{1 \rightarrow 2} = B_1 \cdot I_2 \cdot L_2 = 9.98 \cdot 10^6 N \)

    \(F_{2 \rightarrow 1} = B_2 \cdot I_1 \cdot L_1 = 2.00 \cdot 10^7 N \)

    Key takeaways

    • Currents formed by moving electrical charges create magnetic fields.

    • Magnetic flux density is the measure of the strength of the magnetic field.

    • Currents (and the wires through which they travel) are affected by magnetic fields and impacted by magnetic forces.

    • The magnetic flux density is a vector field that does not exert a force on the direction to which it points but rather in a direction perpendicular to it.

    Frequently Asked Questions about Magnetic Flux Density

    What is magnetic flux density?

    It is the vector field measuring the strength of the magnetic field.

    How do we calculate magnetic flux density?

    For a wire carrying a current, one needs to take into account the radial distance to the wire and the intensity of the current. The formula is B = μ0·I/2·π·r.

    What is magnetic flux density measured in?

    It is measured in Teslas.

    Is magnetic flux density a vector?

    Yes, it has a spatial direction that does not signal the direction of the associated force.

    Why do we use magnetic flux density?

    Because it allows us to measure the strength of the magnetic field per unit of length, area, or volume. This is necessary because we usually deal with infinitely large objects for simplicity.

    Why is magnetic flux density a vector?

    Magnetic flux density is in fact a scalar as it is formed from the scalar product of two vectors, the field vector B and the area vector A.

    Save Article

    Test your knowledge with multiple choice flashcards

    Select the correct statement:

    Select the correct statement:

    Select the correct statement:

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Physics Teachers

    • 6 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email