T-distribution

Mobile Features AB

Suppose you wanted to know how big the average dog was. To do this with statistics and confidence intervals, you would generally need to know something about the variance of the sizes of dogs overall. But in general, you won't know the variance of your population, so what to do? Well, you could increase your sample size, but that can take time and money you might not have. So if you only have a small sample, and you don't know the variance of the population, it is the student \(t\)-distribution to the rescue!

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are constructing a confidence interval and you have a large sample size, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you are constructing a confidence interval using a \(t\)-distribution, the confidence limit is the same as ...

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you are constructing a confidence interval using a \(t\)-distribution, the confidence level is the same as ...

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are doing a hypothesis test involving two populations which are normally distributed and you don't know the population variances, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When using the \(t\)-distribution to construct a confidence interval, if the confidence level increases from \(90\%\) to \(95\%\), what happens to the \(t\)-critical value?  

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If the sample size is large enough, which of these is approximately \(\text{N}(0,1^2)\)?  

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is the formula for finding the degrees of freedom for a \(t\)-distribution with sample size \(n\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are doing a hypothesis test involving two populations which are normally distributed

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are constructing a confidence interval and you have a small sample size, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

True or False:  When \(n=20\) the \(t\)-distribution and the normal distribution are exactly the same.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are doing a hypothesis test involving two populations which are normally distributed and the populations have the same variance, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are constructing a confidence interval and you have a large sample size, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you are constructing a confidence interval using a \(t\)-distribution, the confidence limit is the same as ...

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you are constructing a confidence interval using a \(t\)-distribution, the confidence level is the same as ...

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are doing a hypothesis test involving two populations which are normally distributed and you don't know the population variances, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When using the \(t\)-distribution to construct a confidence interval, if the confidence level increases from \(90\%\) to \(95\%\), what happens to the \(t\)-critical value?  

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If the sample size is large enough, which of these is approximately \(\text{N}(0,1^2)\)?  

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is the formula for finding the degrees of freedom for a \(t\)-distribution with sample size \(n\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are doing a hypothesis test involving two populations which are normally distributed

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are constructing a confidence interval and you have a small sample size, which distribution would you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

True or False:  When \(n=20\) the \(t\)-distribution and the normal distribution are exactly the same.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are doing a hypothesis test involving two populations which are normally distributed and the populations have the same variance, which distribution would you use?

Show Answer

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team T-distribution Teachers

  • 8 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 09.01.2023
  • 8 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 09.01.2023
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    T-distribution big and small dog showing variance in size StudySmarterFig. 1 - There is quite a bit of variation in the size of dogs!

    Definition of the t-distribution

    You might be familiar with the normal distribution as a bell-shaped curve, but it is not the only bell-shaped distribution out there!

    There are many others that share this shape, one of which is the \(t\)-distribution. While these two distributions are very similar, they are used in different situations.

    You would use a normal distribution if you were making a confidence interval or hypothesis test where:

    • the populations are normally distributed and have equal variance;

    • the population variance is known; or

    • the sample size is large.

    On the other hand, you would use a \(t\)-distribution if you were making a confidence interval or hypothesis test where:

    • populations are normally distributed and you don't know the population variances; or

    • the population is normally distributed but the sample size is small.

    Remember that if you know the population variance, or have a sufficiently large sample, for a normally distributed random variable, \(X\), where

    \[\bar{X} \sim \text{N}\left(\mu, \dfrac{\sigma ^2}{n}\right)\]

    you can construct a confidence interval or a hypothesis test.

    In reality, you are not likely to know the actual population variance just as you don't generally know the population mean, which is often what you are testing for.

    When the sample size \(n\) is large enough, you can use the sample variance \(S\) instead of the population variance \(\sigma\). In this instance, the Central Limit Theorem gives you that

    \[\dfrac{\bar{X}-\mu}{\dfrac{S}{\sqrt{n}}}\]

    is approximately normal, and

    \[\frac{\bar{X}-\mu}{\dfrac{S}{\sqrt{n}}} \approx \text{N}(0,1^2).\]

    When \(n\) is small, rather than use the normal distribution, you can use \(t\)-distribution. The value of \(t\) is given by

    \[t=\frac{\bar{X}-\mu}{\dfrac{S}{\sqrt{n}}}.\]

    Below you can see the graph of the standard normal distribution as compared to the \(t\)-distribution for various values of \(n\).

    T-distribution standard normal distribution and t-distribution graphed together for n=1, n=3, and n=10 showing that as n increases the t-distribution gets closer to the standard normal distribution StudySmarterFig. 2 - Standard normal distribution as compared to the \(t\)-distribution for various values of \(n\).

    As you can see in the graph above, as \(n\) increases the \(t\)-distribution gets closer to the standard normal distribution. This is one of the reasons statisticians will say that a sample size of \(20\) is often sufficiently large to switch from using a \(t\)-distribution to a normal distribution.

    Since the sample size has an important part to play in \(t\)-distributions, it is given a special name, as you will see in the next section.

    Degrees of freedom in the t-distribution

    Just like with the chi-squared distribution and \(F\)-distribution, the sample size \(n\) determines the number of degrees of freedom. The sample size tells you two things about the degrees of freedom of the \(t\)-distribution:

    1. The number of degrees of freedom, \(\upsilon\), is determined by the sample size minus \(1\): \(\upsilon = n-1\).

    2. As \(\upsilon \to \infty\), the \(t\)-distribution approaches \(\text{N}(0,1^2)\).

    Indeed, the normal and \(t\)-distributions are pretty similar. Both are symmetrical and exhibit a bell-curve shape, and they have the same end behaviour.

    To indicate you are using a specific degree of freedom for a \(t\)-distribution you can write \(t_\upsilon\)-distribution.

    The t-distribution formula

    The following is the formula you'll need for the \(t\)-distribution.

    If a random sample \(X_1,X_2,X_3, \dots,X_n\) is selected from a normal distribution with an unknown variance \(\sigma ^2\), then

    \[t=\dfrac{\bar{X}-\mu}{\dfrac{S}{\sqrt{n}}}\]

    where \(t\) is a \(t_{n-1}\)-distribution and \(S^2\) is an unbiased estimator of \(\sigma^2\).

    For a reminder of what it means to be unbiased, see the article Estimator Bias.

    Just like with the standard normal distribution, there are tables of values you can use with the \(t\)-distribution.

    Tables for the t-distribution

    The table below is a section of a \(t\)-distribution probability table.

    Table 1. \(t\)-distribution probability table

    \(\upsilon\)

    \(0.100\)

    \(0.050\)

    \(0.025\)

    \(1\)

    \(3.0777\)

    \(6.3138\)

    \(12.7062\)

    \(2\)

    \(1.8856\)

    \(2.9200\)

    \(4.3027\)

    \(3\)

    \(1.6377\)

    \(2.3534\)

    \(3.1824\)

    The values in the table are that which exceed the probability along the top of the table given a certain number of degrees of freedom.

    For example, suppose that \(X\) has \(3\) degrees of freedom. The number \(3.1824\) in the lower right corner of the table above means that:

    • \(P(X>3.1824) = 0.025\); and

    • \(P(X<3.1824) = 1-0.025=0.975\).

    Since the \(t\)-distribution is symmetric for any degrees of freedom, you also know that

    • \(P(X<-3.1824) = 0.025\); and

    • \(P(X>-3.1824) = 1-0.025=0.975\).

    The area \(P(X>3.1824 )=0.025\) for a \(t\)-distribution curve with \(3\) degrees of freedom is shaded the graph below. Remember that when \(\upsilon = 3\) the sample size is \(n=4\).

    T-Distribution A t-distribution curve with 3 degrees of freedom and the probability area of 0.025 or greater shaded in blue on the right tail of the curve. StudySmarterFig. 3 - \(t_3\)-distribution with the shaded area equaling \(0.025\).

    Let's take a look at an example.

    Suppose \(X\) is a random variable with degrees of freedom \(\upsilon\). Find the value of \(s\) where \(P(|X|<s)=0.80\) where \(\upsilon = 3\).

    Solution

    Notice that \(P(|X|<s)=0.80\) is the same as \(P(|X|>s)=0.20\) because the \(t\)-distribution is symmetric. This looks a little odd, but it simply means that \(P(X<-s)=0.1\) and \(P(X>s)=0.1\). It can often help to draw a picture of what you are looking for.

    T-Distribution A graph of a bell curve with the left and right 0.1 areas shaded. StudySmarterFig. 4 - The total shaded area is \(0.2\).

    You can use the \(t\)-distribution table or a calculator to find that the value of \(s\) that gives you \(P(X>s)=0.1\) is \(s=1.6377 \).

    Critical values for the t-distribution

    Critical values are used when constructing confidence intervals. Confidence intervals depend on the confidence level, you are using. Remember that the confidence limits for a \(100(1-\alpha)\%\) always have the form

    test statistic \(\pm\) (\(t\)-critical value)(standard error).

    In the case of the \(t\)-distributions, the standard error is given by

    \[ \text{standard error} = \frac{s}{\sqrt{n}},\]

    and the \(t\)-critical value is

    \[ \text{critical value} =t^*= t_{n-1}\left(\frac{\alpha}{2}\right) .\]

    Suppose you have a \(t_2\)-distribution. Find the critical values for the \(90\%\), \(95\%\), and \(99\%\) confidence levels.

    Solution:

    For the \(90\%\) confidence level, the first goal is to find \(\alpha\). Here

    \[ 90\% = 100\%(1-\alpha) \]

    so

    \[ 0.9 = 1 - \alpha\]

    and

    \[ \alpha = 0.1.\]

    Then for the \(t\)-critical value,

    \[\begin{align} t^*& = t_{n-1}\left(\frac{\alpha}{2}\right) \\ & = t_2\left(\frac{0.10}{2}\right) \\ &= t_2(0.05) \\&= 2.92 . \end{align}\]

    Similarly, for the \(95\%\) confidence level the \(t\)-critical value is

    \[\begin{align} t^*& = t_{n-1}\left(\frac{\alpha}{2}\right) \\ & = t_2\left(\frac{0.05}{2}\right) \\ &= t_2(0.025) \\&= 4.3027, \end{align} \]

    and for the \(99\%\) confidence level the \(t\)-critical value is

    \[\begin{align} t^*& = t_{n-1}\left(\frac{\alpha}{2}\right) \\ & = t_2\left(\frac{0.01}{2}\right) \\ &= t_2(0.005) \\&= 9.925 . \end{align}\]

    Notice that as the confidence level increases the \(t\)-critical value does as well, meaning that your confidence interval gets larger. That makes sense for two main reasons:

    • the more confident you are in a prediction, the harder it is to guarantee you have captured the population parameter in the confidence interval; and

    • the \(t\)-critical value is related to the area under the \(t\)-distribution curve.

    For example, at the \(80\%\) confidence level you are actually asking for \(80\%\) of the area under the curve to be captured in the shaded area. The higher your confidence level, the larger the shaded area!

    T-distribution area under center of curve corresponds to confidence level StudySmarterFig. 5 - \(t\)-distribution showing how confidence level relates to the area under the curve.

    This is one of the reasons it can be helpful to draw a picture of what you are trying to find before you reach for a calculator or \(t\)-distribution table!

    T-Distribution - Key takeaways

    • If the random sample \(X_1,X_2,X_3, \dots,X_n\) is normally distributed with an unknown variance, \(\sigma ^2\), then you have \[t=\dfrac{\bar{X}-\mu}{\dfrac{S}{\sqrt{n}}}\] where \(t\) has a \(t_{n-1}\)-distribution and \(S^2\) is an unbiased estimator for \(\sigma ^2\).
    • The number of degrees of freedom is determined by the sample size minus \(1\),\(\upsilon = n-1\).
    • As \(\upsilon \to \infty\), the \(t\) distribution approaches \(\text{N}(0,1^2)\).
    • The critical value, \(t^*\), for the \(\alpha\) confidence level can be found with the formula \[ t^*= t_{n-1}\left(\frac{\alpha}{2}\right). \]
    Frequently Asked Questions about T-distribution

    Why do we use T-distribution? 

    We use the T-distribution when we do not know the population variance and the sample size of the sample variance is small.

    How do you find the T-distribution? 

    The T-distribution is similar to the normal distribution but we do not know the population variance and the sample size of the sample variance is small.

    What is the T-distribution in statistics? 

    The T-distribution is similar to the normal distribution but we do not know the population variance and the sample size of the sample variance is small.

    Is T-distribution symmetric?

    Like the normal distribution, the T-distribution is a symmetric bell-curve.

    When to use T-distribution?

    We use the T-distribution when we do not know the population variance and the sample size of the sample variance is small.

    Save Article

    Test your knowledge with multiple choice flashcards

    If you are constructing a confidence interval and you have a large sample size, which distribution would you use?

    When you are constructing a confidence interval using a \(t\)-distribution, the confidence limit is the same as ...

    When you are constructing a confidence interval using a \(t\)-distribution, the confidence level is the same as ...

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email