Sample Mean

Mobile Features AB

You are about to finish high school, and you have decided it is time for a change of scenery, so you want to go to a university in another city, let's say San Francisco, California. Among your considerations are, how much will I pay for the rent of an apartment, or how much will I spend on public transportation? So, you decide to ask some of your acquaintances who live over there to see how much they spend on average.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which condition regarding the sample size must be met for the sampling distribution of the mean to be normal?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A population has mean \(\mu\) and standard deviation \(\sigma\). For which sample size will the standard deviation of the sample mean be larger?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A population has mean \(\mu\) and standard deviation \(\sigma\). For which sample size will the standard deviation of the sample mean be smaller?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

From a population with mean \(\mu=5\) and standard deviation \(\sigma=2\), a sample of size \(25\) is taken. What is the standard deviation of the sample mean?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have information about the population, which formula will you use to calculate the standard deviation of a sample mean \(\overline{x}\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If the sampling distribution of the mean \(\overline{x}\) is approximately normal, has mean \(25\) and standard deviation \(11\), how do you calculate the probability \(P(\overline{x}<23)\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you don't have information about the population, which formula will you use to calculate the standard deviation of a sample mean \(\overline{x}\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

From a population with mean \(\mu=10\) and standard deviation \(\sigma=5\), a sample of size \(100\) is taken. What is the standard deviation of the sample mean?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

The distribution of the sample mean can be normal even if the distribution of the population is not normal.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which condition regarding the sample size must be met for the sampling distribution of the mean to be normal?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A population has mean \(\mu\) and standard deviation \(\sigma\). For which sample size will the standard deviation of the sample mean be larger?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A population has mean \(\mu\) and standard deviation \(\sigma\). For which sample size will the standard deviation of the sample mean be smaller?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

From a population with mean \(\mu=5\) and standard deviation \(\sigma=2\), a sample of size \(25\) is taken. What is the standard deviation of the sample mean?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have information about the population, which formula will you use to calculate the standard deviation of a sample mean \(\overline{x}\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If the sampling distribution of the mean \(\overline{x}\) is approximately normal, has mean \(25\) and standard deviation \(11\), how do you calculate the probability \(P(\overline{x}<23)\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you don't have information about the population, which formula will you use to calculate the standard deviation of a sample mean \(\overline{x}\)?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

From a population with mean \(\mu=10\) and standard deviation \(\sigma=5\), a sample of size \(100\) is taken. What is the standard deviation of the sample mean?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

The distribution of the sample mean can be normal even if the distribution of the population is not normal.

Show Answer

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Sample Mean Teachers

  • 8 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 06.01.2023
  • 8 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 06.01.2023
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    This process is called taking a sample mean and in this article you will find the definition, how to calculate a sample mean, standard deviation, variance, the sampling distribution and examples.

    Definition of Sample Means

    The mean of a set of numbers is just the average, that is, the sum of all the elements in the set divided by the number of elements in the set.

    The sample mean is the average of the values obtained in the sample.

    It is easy to see that if two sets are different, they will most likely also have different means.

    Calculation of Sample Means

    The sample mean is denoted by \(\overline{x}\), and is calculated by adding up all the values obtained from the sample and dividing by the total sample size \(n\). The process is the same as averaging a data set. Therefore, the formula is \[\overline{x}=\frac{x_1+\ldots+x_n}{n},\]

    where \(\overline{x}\) is the sample mean, \(x_i\) is each element in the sample and \(n\) is the sample size.

    Let's go back to the San Francisco example. Suppose you asked \(5\) of your acquaintances how much they spend on public transport per week, and they said \(\$20\), \(\$25\), \(\$27\), \(\$43\), and \(\$50\). So, the sample mean is calculated by:

    \[\overline{x}=\frac{20+25+27+43+50}{5}=\frac{165}{5}=33.\]

    Therefore, for this sample, the average amount spent on public transportation in a week is \($33\).

    Standard Deviation and Variance of the Sample Mean

    Since the variance is the square of the standard deviation, to calculate either value, two cases must be considered:

    1. You know the population standard deviation.

    2. You do not know the population standard deviation.

    The following section shows how to calculate this value for each case.

    The Mean and Standard Deviation Formula for Sample Means

    The mean of the sample mean, denoted by \(\mu_\overline{x}\), is given by the population mean, that is if \(\mu\) is the population mean, \[\mu_\overline{x}=\mu.\]

    To calculate the standard deviation of the sample mean (also called the standard error of the mean (SEM)), denoted by \(\sigma_\overline{x}\), the two previous cases must be considered. Let's explore them in turn.

    Calculating the Sample Mean Standard Deviation using the Population Standard Deviation

    If the sample of size \(n\) is drawn from a population whose standard deviation \(\sigma\) is known, then the standard deviation of the sample mean will be given by \[\sigma_\overline{x}=\frac{\sigma}{\sqrt{n}}.\]

    A sample of \(81\) people was taken from a population with standard deviation \(45\), what is the standard deviation of the sample mean?

    Solution:

    Using the formula stated before, the standard deviation of the sample mean is \[\sigma_\overline{x}=\frac{45}{\sqrt{81}}=\frac{45}{9}=5.\]

    Note that to calculate this, you do not need to know anything about the sample besides its size.

    Calculating the Sample Mean Standard Deviation without using the Population Standard Deviation

    Sometimes, when you want to estimate the mean of a population, you do not have any information other than just the data from the sample you took. Fortunately, if the sample is large enough (greater than \(30\)), the standard deviation of the sample mean can be approximated using the sample standard deviation. Thus, for a sample of size \(n\), the standard deviation of the sample mean is \[\sigma_\overline{x}\approx\frac{s}{\sqrt{n}},\] where \(s\) is the sample standard deviation (see the article Standard Deviation for more information) calculated by:

    \[s=\sqrt{\frac{(x_1-\overline{x})^2+\ldots+(x_n-\overline{x})^2}{n-1}},\]

    where \(x_i\) is each element in the sample and \(\overline{x}\) is the sample mean.

    ❗❗ The sample standard deviation measures the dispersion of data within the sample, while the sample mean standard deviation measures the dispersion between the means from different samples.

    Sampling Distribution of the Mean

    Recall the sampling distribution definition.

    The distribution of the sample mean (or sampling distribution of the mean) is the distribution obtained by considering all the means that can be obtained from fixed-size samples in a population.

    If \(\overline{x}\) is the sample mean of a sample of size \(n\) from a population with mean \(\mu\) and standard deviation \(\sigma\). Then, the sampling distribution of \(\overline{x}\) has mean and standard deviation given by \[\mu_\overline{x}=\mu\,\text{ and }\,\sigma_\overline{x}=\frac{\sigma}{\sqrt{n}}.\]

    Furthermore, if the distribution of the population is normal or the sample size is large enough (according to the Central Limit Theorem, \(n\geq 30\) is enough), then the sampling distribution of \(\overline{x}\) is also normal.

    When the distribution is normal, you can calculate probabilities using the standard normal distribution table, for this you need to convert the sample mean \(\overline{x}\) into a \(z\)-score using the following formula

    \[z=\frac{\overline{x}-\mu_\overline{x}}{\sigma_\overline{x}}=\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}.\]

    You may be wondering, what happens when the population distribution is not normal and the sample size is small? Unfortunately, for those cases, there is no general way to obtain the shape of the sampling distribution.

    Let's see an example of a graph of a sampling distribution of the mean.

    Going back to the example of public transportation in San Francisco, let's suppose you had managed to survey thousands of people, grouped the people into groups of size \(10\), averaged them in each group and obtained the following graph.

    Sample Means relative frenquency histogram of 360 sample means from samples of size 10 for the public transport example StudySmarterFigure 1. Relative frenquency histogram of 360 sample means for the public transport example

    This graph approximates the graph of the sampling distribution of the mean. Based on the graph, you can deduce that an average of \(\$37\) is spent on public transportation in San Francisco.

    Examples of Sample Means

    Let's see an example of how to calculate probabilities.

    It is assumed that the human body temperature distribution has a mean of \(98.6\, °F\) with a standard deviation of \(2\, °F\). If a sample of \(49\) people are taken at random, calculate the following probabilities:

    (a) the average temperature of the sample is less than \(98\), that is, \(P(\overline{x}<98)\).

    (b) the average temperature of the sample is greater than \(99\), that is, \(P(\overline{x}>99)\).

    (c) the average temperature is between \(98\) and \(99\), that is, \(P(98<\overline{x}<99)\).

    Solution:

    1. Since the sample size is \(n=49>30\), you can assume the sampling distribution is normal.

    2. Calculating the mean and the standard deviation of the sample mean. Using the formulas stated before, \(\mu_\overline{x}=98.6\) and the standard deviation \(\sigma_\overline{x}=2/\sqrt{49}=2/7\).

    3. Converting the values into \(z-\)scores and using the standard normal table (see the article Standard Normal Distribution for more information), you'll have for (a):

    \[\begin{align} P(\overline{x}<98) &=P\left(z<\frac{98-98.6}{\frac{2}{7}}\right) \\ &= P(z<-2.1) \\ &=0.0179. \end{align}\]

    For (b) you'll have:

    \[\begin{align} P(\overline{x}>99) &=P\left(z>\frac{99-98.6}{\frac{2}{7}}\right) \\ &= P(z>1.4) \\ &=1-P(z<1.4) \\ &=1-0.9192 \\ &= 0.0808. \end{align}\]

    Finally, for (c):

    \[\begin{align} P(98<\overline{x}<99) &=P(\overline{x}<99)-P(\overline{x}<98) \\ &= P(z<1.4)-P(z<-2.1) \\ &= 0.9192-0.0179 \\ &=0.9013. \end{align}\]

    Sample Mean - Key takeaways

    • The sample mean allows you to estimate the population mean.
    • The sample mean \(\overline{x}\) is calculated as an average, that is, \[\overline{x}=\frac{x_1+\ldots+x_n}{n},\] where \(x_i\) is each element in the sample and \(n\) is the sample size.
    • The sampling distribution of the mean \(\overline{x}\) has mean and standard deviation given by \[\mu_\overline{x}=\mu\,\text{ and }\,\sigma_\overline{x}=\frac{\sigma}{\sqrt{n}}.\]
    • When the sample size is greater than \(30\), according to the Central Limit Theorem, the sampling distribution of the mean is similar to a normal distribution.
    Frequently Asked Questions about Sample Mean

    What is sample mean?


    The sample mean is the average of the values obtained in the sample.

    How do you find sample mean?


    By adding up all the values obtained from a sample and dividing by the number of values in the sample.

    What is the formula for sample mean?


    The formula for calculating the sample mean is (x1+...+xn)/n, where xi is each element in the sample and n is the sample size.

    What is the importance of using sample mean?


    The most obvious benefit of computing the sample mean is that it provides reliable information that can be applied to the bigger group/population. This is significant since it allows for statistical analysis without the impossibility of polling every person involved.  

    What is the disadvantages of using sample mean? 

    The main disadvantage is that you cannot find extreme values, either very high or very low, since taking the average of them makes you get a value close to the mean. Another disadvantage is that it is sometimes difficult to select good samples, so there is a possibility of getting biased answers. 

    Save Article

    Test your knowledge with multiple choice flashcards

    Which condition regarding the sample size must be met for the sampling distribution of the mean to be normal?

    A population has mean \(\mu\) and standard deviation \(\sigma\). For which sample size will the standard deviation of the sample mean be larger?

    A population has mean \(\mu\) and standard deviation \(\sigma\). For which sample size will the standard deviation of the sample mean be smaller?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email