Paired T-Test

Mobile Features AB

What if you wanted to test whether a vaccine had reduced the number of antibodies in their patients. How would you go about testing this? You probably wouldn't be interested in the average number of antibodies in each patient, but rather in the difference between the number of antibodies before and after a vaccine is administered. Since you are checking information on the same person twice, this test is known as a paired test. In particular, if the sample of patients being tested is small or the true variance of the differences is unknown, you will need to use a paired \(t\)-test.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are taking samples from the same person before and after a medical treatment, which kind of test might you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have a control group and a treatment group, which kind of test might you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have twins and one of them is in the control group and the other is in the treatment group, which kind of test might you use? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you have independent samples, which kind of test might you do? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When your samples are dependent, which kind of test might you do?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have a sample size of \(13\) and you are doing a paired \(t\)-test, how many degrees of freedom are there?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you have \(15\) students and you are asking them about their study habits before and after they are introduced to a new learning tool. For the paired \(t\)-test, what is the sample size?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following do you need to do a paired \(t\)-test.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following are good indications you need to use a \(t\)-test?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Your work place believes that remote workers are not as productive as in-person workers.  They would like to set up a paired \(t\)-test to check this belief.  Which of the following would be an appropriate setup?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are taking samples from the same person before and after a medical treatment, which kind of test might you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have a control group and a treatment group, which kind of test might you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have twins and one of them is in the control group and the other is in the treatment group, which kind of test might you use? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you have independent samples, which kind of test might you do? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When your samples are dependent, which kind of test might you do?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you have a sample size of \(13\) and you are doing a paired \(t\)-test, how many degrees of freedom are there?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you have \(15\) students and you are asking them about their study habits before and after they are introduced to a new learning tool. For the paired \(t\)-test, what is the sample size?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following do you need to do a paired \(t\)-test.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following are good indications you need to use a \(t\)-test?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Your work place believes that remote workers are not as productive as in-person workers.  They would like to set up a paired \(t\)-test to check this belief.  Which of the following would be an appropriate setup?

Show Answer

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Paired T-Test Teachers

  • 8 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 09.01.2023
  • 8 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 09.01.2023
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Paired t-test assumptions

    It is important to know when you need a paired test rather than a more standard test. If

    • you are checking a person both before and after a treatment, or

    • you are using one twin as the control and the other as the test subject,

    then you would use a paired \(t\)-test.

    In a paired experiment you are interested in the difference between results, rather than the results themselves.

    Suppose your school gives you a pre-test, then teaches you the information, and then gives you the actual exam. The school is trying to see if the teaching is actually effective. In other words, the students are the test subjects, the treatment is the teaching, and the school is interested in the difference between the pre-test and actual exam results.

    If there is no difference between the pre-test and actual exam results, the school will know they need to change how they are teaching the information.

    The main assumption to use a paired \(t\)-test, other than the fact that you have paired data, is that the differences in the data are normally distributed.

    Definition of paired t-test

    A paired \(t\)-test, also known as a paired sample \(t\)-test, is used to compare the mean difference between pairs of measurements is zero or not.

    Matched subjects, also called paired samples or matched pairs, are two measurements that are not independent of each other.

    In the example above, the school would look at the pre-test score for a particular student and compare it to that student's actual exam score. Those two scores are not independent because it is the same student taking both the pre-test and the actual exam. The two scores are matched pairs.

    If you had independent samples, then you would use a different hypothesis test. See the article Hypothesis Test for Two Normal Distributions in the case of independent samples.

    Even though the matched pairs are not independent, the differences in the measurements must be independent. What does this mean?

    In the example about the exams, you would need to assume that students are not cheating off of each other. If student A were cheating off of the exam papers from student B, then the differences in the pre-test score and the exam score for students A and B would not be independent. In that case, you could not use a paired \(t\)-test.

    Since one of the assumptions to use a paired \(t\)-test is that the differences are normally distributed, you can treat the differences as if they were a random sample from a \(\text{N}(\mu,\sigma^2 )\) distribution, and then do the hypothesis test as if you had a single sample. For more information on doing this kind of hypothesis test, see the article Hypothesis Test for the Difference Between Two Means.

    In general, when you do a paired \(t\)-test you will not know the population variance, and the number of matched pairs will be relatively small.

    Paired vs. unpaired t-tests

    It is very important to understand when you use a standard \(t\)-test versus a paired \(t\)-test. Recall that an unpaired t-test is used to compare the averages of two independent samples to determine if there is a significant difference between the two.

    The key difference between paired and unpaired \(t\)-tests is that paired \(t\)-tests test for the difference between the mean of two samples.

    Say you wish to know whether changing the layout of a clothing store means that more people are likely to buy from that store. You wish to compare the sales before and after changing the layout. The two sets of data are not independent (you are matching before and after sales), so a paired \(t\)-test would be used.

    On the other hand, if you want to see if two different stores that have similar layouts have a similar number of people shopping in them, you would use an unpaired \(t\)-test because the samples are independent.

    What about the degrees of freedom for the test?

    Paired t-tests: degrees of freedom

    A paired \(t\)-test works exactly the same as a regular \(t\)-test when calculating the degrees of freedom. The degrees of freedom is equal to the sample size minus \(1\): \(\upsilon =n-1\).

    So what is \(n\)? In a paired \(t\)-test, the two samples taken share the same sample size, so \(n\) is just the number of matched pairs.

    Paired t-test formula

    Of course, it helps to have a more formal definition of the formula for a paired \(t\)-test.

    In a paired experiment where \(n\) is small and \(\sigma ^2\) is unknown, then if the difference between two population means, \(D\), is distributed as \(\text{N}(\mu _D, \sigma ^2)\), then

    \[t=\dfrac{\bar{D}-\mu _D}{\dfrac{S}{\sqrt{n}}}\sim t_{n-1}\]

    where \(\bar{D}\) is the mean of the differences between the two samples.

    The key thing here is that you will need to take the average of the differences rather than the average of the actual samples.

    Paired sample t-test examples

    Let's look at a couple of examples.

    Suppose you are trying to see if a medicated skin lotion works better than a non-medicated one. So you collect a group of \(20\) people with dry skin on their feet. For one week they rub medicated skin lotion on their left foot, and non-medicated skin lotion on their right foot. At the end of the week, you check the dryness level of each foot. Is this a situation in which you would use a paired \(t\)-test?

    Solution

    Notice that the sample size is relatively small, and you do not know the variance of the populations. So a \(t\)-test is indicated. The question is whether you would use a paired \(t\)-test or not.

    You are checking the dryness level of the left and right foot on the same person, and looking at the difference. Since you are looking at the feet of the same person, it matches paired data. The data you collect from one person is independent of the data you collect from a different person, so the differences are independent. Therefore you can use a paired \(t\)-test as long as you assume the differences in the data are normally distributed.

    What if the situation is changed a bit?

    Suppose you are trying to see if a medicated skin lotion works better than a non-medicated one. So you collect a group of \(20\) people with dry skin on their feet. For one week, half of them rub medicated skin lotion on their feet, and the other half of the group rub non-medicated skin lotion on their feet. At the end of the week, you check the dryness level of people's feet. Is this a situation in which you would use a paired \(t\)-test?

    Solution

    Notice that the main difference between this and the previous example is that there is no pairing going on! You really have two separate groups of subjects getting different treatments, and there is no way to pair the data in a meaningful way. So while the small sample size would indicate a \(t\)-test would be used, it would not be a paired \(t\)-test.

    Paired T-Test - Key takeaways

    • To do a paired \(t\)-test, you will need that you have matched pair data, the differences between the measurements are independent, and that the differences are approximately normally distributed.
    • The degrees of freedom for a paired \(t\)-test are \(\upsilon =n-1\).
    • In a paired experiment where \(n\) is small and \(\sigma ^2\) is unknown, if the difference between two population means, \(D\), is distributed as \(\text{N}(\mu _D, \sigma ^2)\), then\[t=\dfrac{\bar{D}-\mu _D}{\dfrac{S}{\sqrt{n}}} \sim t_{n-1}\]where \(\bar{D}\) is the mean of the differences between the two samples.
    Frequently Asked Questions about Paired T-Test

    What is the difference between a t-test and a paired t-test?

    The key difference between paired and regular t-tests is that paired t-tests test for the difference between the mean of two samples. A regular t-test only tests after treatment. 

    Where is paired t-test used?

    Paired t-tests test for the difference between the mean of two samples.

    What is a paired t test?

    Paired t-tests test for the difference between the mean of two samples.

    How to do a paired t test by hand?

    You can perform a t-test using statistical tables if you do not have a suitable calculator.

    What does a paired sample t-test measure?

    Paired t-tests test for the difference between the mean of two samples.

    Save Article

    Test your knowledge with multiple choice flashcards

    If you are taking samples from the same person before and after a medical treatment, which kind of test might you use?

    If you have a control group and a treatment group, which kind of test might you use?

    If you have twins and one of them is in the control group and the other is in the treatment group, which kind of test might you use? 

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email