Degrees of Freedom

Mobile Features AB

Your life is made up of constraints on your time. When you go to work, how much time you spend studying, and the amount of sleep you need are all examples of constraints placed on you. You can think about how free you are in terms of how many constraints are placed upon you. 

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

For a Chi-squared test, where in the notation would you find the degrees of freedom?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of these is the correct notation for a Chi-Squared test with \(5\) degrees of freedom?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is a common constraint when using a Chi-Squared distribution?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you see \(\chi^2_4\), how many degrees of freedom are there?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you see \(\chi^2_4\), how many cells after combining are there?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are rolling a \(20\) sided die and want to model the results using a Chi-Squared distribution, how many degrees of freedom would there be?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are rolling a \(20\) sided die and want to model the results using a Chi-Squared distribution, how many constraints would there be?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

For a Chi-Squared distribution, \(\chi^2_5(0.99)\) is equivalent to the value of \(y\) where ____.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

For a Chi-Squared distribution, the value of \(y\) where \(P(\chi^2_5 > y) = 0.95\) is equivalent to ____.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you are combining cells for a Chi-Squared test, how do you decide to combine cells?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you are using a Chi-Squared distribution to model something, and you start with 10 cells but need to combine them to 8. How many degrees of freedom do you use?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

For a Chi-squared test, where in the notation would you find the degrees of freedom?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of these is the correct notation for a Chi-Squared test with \(5\) degrees of freedom?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is a common constraint when using a Chi-Squared distribution?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you see \(\chi^2_4\), how many degrees of freedom are there?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you see \(\chi^2_4\), how many cells after combining are there?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are rolling a \(20\) sided die and want to model the results using a Chi-Squared distribution, how many degrees of freedom would there be?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you are rolling a \(20\) sided die and want to model the results using a Chi-Squared distribution, how many constraints would there be?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

For a Chi-Squared distribution, \(\chi^2_5(0.99)\) is equivalent to the value of \(y\) where ____.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

For a Chi-Squared distribution, the value of \(y\) where \(P(\chi^2_5 > y) = 0.95\) is equivalent to ____.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you are combining cells for a Chi-Squared test, how do you decide to combine cells?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you are using a Chi-Squared distribution to model something, and you start with 10 cells but need to combine them to 8. How many degrees of freedom do you use?

Show Answer

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Degrees of Freedom Teachers

  • 7 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 05.01.2023
  • 7 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 05.01.2023
  • 7 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    In statistics, there are constraints as well. The Chi Squared Tests use degrees of freedom to describe how free a test is based on the constraints placed on it. Read on to figure out how free the Chi Squared Test really is!

    Degrees of freedom meaning

    Many tests use degrees of freedom, but here you will see degrees of freedom as it relates to Chi Squared Tests. In general, the degrees of freedom is a way to measure how many test statistics you have calculated from the data. The more test statistics you have calculated using your sample, the less freedom you have to make choices with your data. Of course, there is a more formal way to describe these constraints as well.

    A constraint, also called a restriction, is a requirement placed on the data by the model for the data.

    Let's look at an example to see what that means in practice.

    Suppose you are doing an experiment where you roll a four sided die \(200\) times. Then the sample size is \(n=200\). One constraint is that your experiment needs the sample size to be \(200\).

    The number of constraints will also depend on the number of parameters you need to describe a distribution, and whether or not you know what these parameters are.

    Next, let's look at how the constraints relate to degrees of freedom.

    Degrees of freedom formula

    For most cases, the formula

    degrees of freedom = number of observed frequencies - number of constraints

    can be used. If you go back to the example with the four sided die above, there was one constraint. The number of observed frequencies is \(4\) (the number of sides on the die. So the degrees of freedom would be \(4-1 = 3\).

    There is a more general formula for the degrees of freedom:

    degrees of freedom = number of cells (after combining) - number of constraints.

    You are probably wondering what a cell is and why you might combine it. Let's look at an example.

    You send out a survey to \(200\) people asking how many pets people have. You get back the following table of responses.

    Table 1. Responses from pet ownership survey.

    Pets\(0\)\(1\)\(2\)\(3\)\(4\)\(>4\)
    Expected\(60\)\(72\)\(31\)\(20\)\(7\)\(10\)

    However, the model you are using is only a good approximation if none of the expected values falls below \(15\). So you could combine the last two columns of data (known as cells) into the table below.

    Table 2. Responses from pet ownership survey with combined cells.

    Pets\(0\)\(1\)\(2\)\(3\)\(>3\)
    Expected\(60\)\(72\)\(31\)\(20\)\(17\)

    Then there are \(5\) cells, and one constraint (that the total of the expected values is \(200\)). So the degrees of freedom is \(5 - 1= 4\).

    You will usually only combine adjoining cells in your tables of data. Next, let's look at the official definition of degrees of freedom with the Chi-Squared distribution.

    Degrees of freedom definition

    If you have a random variable \(X\) and want to do an approximation for the statistic \(X^2\), you would use the \(\chi^2\) family of distributions. This is written as

    \[\begin{align} X^2 &= \sum \frac{(O_t - E_t)^2}{E_t} \\ &= \sum \frac{O_t ^2}{E_t} -N \\ & \sim \chi^2, \end{align}\]

    where \(O_t\) is the observed frequency, \(E_t\) is the expected frequency, and \(N\) is the total number of observations. Remember that the Chi-Squared tests are only a good approximation if none of the expected frequencies is below \(5\).

    For a reminder of this test and how to use it, see Chi Squared Tests.

    The \(\chi^2\) distributions are actually a family of distributions that depend on the degrees of freedom. The degrees of freedom for this kind of distribution are written using the variable \(\nu\). Since you may need to combine cells when using \(\chi^2\) distributions, you would use the definition below.

    For the \(\chi^2\) distribution, the number of degrees of freedom, \(\nu\) is given by

    \[ \nu = \text{number of cells after combining}-1.\]

    There will be cases where cells won't be combined, and in that case, you can simplify things a bit. If you go back to the four sided die example, there are \(4\) possibilities that could come up on the die, and these are the expected values. So for this example \(\nu = 4 - 1 = 3\) even if you are using a Chi-Squared distribution to model it.

    To be sure you know how many degrees of freedom you have when using the Chi-Squared distribution, it is written as a subscript: \(\chi^2_\nu \).

    Degrees of freedom table

    Once you know that you are using a Chi-Squared distribution with \(\nu\) degrees of freedom, you will need to use a degrees of freedom table so that you can do hypothesis tests. Here is a section out of a Chi-Squared table.

    Table 3. Chi-Squared table.

    degrees of freedom

    \(0.99\)

    \(0.95\)

    \(0.9\)

    \(0.1\)

    \(0.05\)

    \(0.01\)

    \(2\)

    \(0.020\)

    \(0.103\)

    \(0.211\)

    \(4.605\)

    \(5.991\)

    \(9.210\)

    \(3\)

    \(0.155\)

    \(0.352\)

    \(0.584\)

    \(6.251\)

    \(7.815\)

    \(11.345\)

    \(4\)

    \(0.297\)

    \(0.711\)

    \(1.064\)

    \(7.779\)

    \(9.488\)

    \(13.277\)

    The first column of the table contains the degrees of freedom, and the first row of the table are areas to the right of the critical value.

    The notation for a critical value of \(\chi^2_\nu\) which is exceeded with probability \(a\%\) is \(\chi^2_\nu(a\%)\) or \(\chi^2_\nu(a/100)\).

    Let's take an example using the Chi-Squared table.

    Find the critical value for \(\chi^2_3(0.01)\).

    Solution:

    The notation for \(\chi^2_3(0.01)\) tells you that there are \(3\) degrees of freedom and you are interested in the \(0.01\) column of the table. Looking at the intersection of the row and column in the table above, you get \(11.345\). So

    \[\chi^2_3(0.01) = 11.345 . \]

    There is a second use for the table, as demonstrated in the next example.

    Find the smallest value of \(y\) such that \(P(\chi^2_3 > y) = 0.95\).

    Solution:

    Remember that the significance level is the probability that the distribution exceeds the critical value. So asking for the smallest value \(y\) where \(P(\chi^2_3 > y) = 0.95\) is the same as asking what \(\chi^2_3(0.95)\) is. Using the Chi-Squared table you can see that \(\chi^2_3(0.95) =0.352 \), so \(y=0.352\).

    Of course, a table can't list all of the possible values. If you need a value which is not in the table, there are many different statistics packages or calculators that can give you Chi-Squared table values.

    Degrees of freedom t-test

    The degrees of freedom in a \(t\)-test is calculated depending on if you are using paired samples or not. For more information on these topics, see the articles T-distribution and Paired t-test.

    Degrees of Freedom - Key takeaways

    • A constraint, also called a restriction, is a requirement placed on the data by the model for the data.
    • In most cases, degrees of freedom = number of observed frequencies - number of constraints.
    • A more general formula for degrees of freedom is: degrees of freedom = number of cells (after combining) - number of constraints.
    • For the \(\chi^2\) distribution, the number of degrees of freedom, \(\nu\) is given by

      \[ \nu = \text{number of cells after combining}-1.\]

    Frequently Asked Questions about Degrees of Freedom

    How do you determine the degrees of freedom? 

    It depends on the kind of test you are doing. Sometimes it is the sample size minus 1, sometimes it is the sample size minus 2.

    What is degree of freedom with example? 

    The degree of freedom is related to the sample size and the kind of test you are doing. For example in a paired t-test the degree of freedom is the sample size minus 1.

    What is DF in at test? 

    It is the number of degrees of freedom.

    What is the role of degree of freedom? 

    It tells you how many independent values that can vary without breaking any constraints in the problem.

    What do you mean by degrees of freedom? 

    In statistics, the degrees of freedom tells you how many independent values that can vary without breaking any constraints in the problem. 

    Save Article

    Test your knowledge with multiple choice flashcards

    For a Chi-squared test, where in the notation would you find the degrees of freedom?

    Which of these is the correct notation for a Chi-Squared test with \(5\) degrees of freedom?

    What is a common constraint when using a Chi-Squared distribution?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 7 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email