Bivariate Data

Mobile Features AB

Bivariate data is data that has been collected in two variables, and each data point in one variable has a corresponding data point in the other value. We normally collect bivariate data to try and investigate the relationship between the two variables and then use this relationship to inform future decisions. 

Get started

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Bivariate Data Teachers

  • 4 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 12.05.2023
  • 4 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 12.05.2023
  • 4 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    For example, we could collect data of outside temperature versus ice cream sales, or we could study height vs shoe size, these would both be examples of bivariate data. If there was a relationship showing an increase of outside temperature increased ice cream sales, then shops could use this to buy more ice cream for hotter spells during the summer.

    How to represent bivariate data?

    We use scatter graphs to represent bivariate data. A scatter graph of bivariate data is a two-dimensional graph with one variable on one axis, and the other variable on the other axis. We then plot the corresponding points on the graph. We can then draw a regression line (also known as a line of best fit), and look at the correlation of the data (which direction the data goes, and how close to the line of best fit the data points are).

    Drawing a scatter graph

    Step 1: We start by drawing a set of axis and choosing an appropriate scale for the data.Step 2 : Label the x-axis with the explanatory / independent variable (the variable that will change), and the y-axis with the response / dependent variable (the variable which we suspect will change due to the independent variable changing). Also label the graph itself, describing what the graph shows. Step 3: Plot the data points on the graph.Step 4: Draw the line of best fit, if required.

    Here is a set of data relating the temperature on days in July, and the number of ice creams sold in a corner shop.

    Temperature (° C)

    14

    16

    15

    16

    23

    12

    21

    22

    Ice cream sales

    16

    18

    14

    19

    43

    12

    24

    26

    In this case, the temperature is the independent variable, and ice cream sales are the dependent variable. This means that we plot temperature on the x-axis, and ice cream sales on the y-axis. The resulting graph should look as follows.

    Bivariate date Ice cream sales on a graph StudySmarterGraph of Ice cream sales against temperature - StudySmarter Originals

    The following data represents the journey of a car with time and distance travelled measured starting from the beginning of the journey:

    Time (in hours)12345678
    Distance (km)1217182935515360

    In this case, time is the independent variable, and distance is the dependent variable. This means that we plot time on the x-axis, and distance on the y-axis. The resulting graph should look as follows.

    Bivariate date graph StudySmarterGraph of distance against time - StudySmarter Originals

    What is the meaning of correlation and regression for bivariate data?

    Correlation describes the relationship between two variables. We describe correlation on a sliding scale from -1 to 1. Anything negative is called a negative correlation, and a positive correlation corresponds to a positive number. The closer to each end of the scale the correlation is, the stronger the relationship, and the closer to zero the correlation is, the weaker the relationship. A zero correlation means there is no relationship between the two variables. Regression is when we draw a line of best fit for the data. This line of best fit minimizes the distance between the data points and this regression line. Correlation is a measure of how close the data is to our line of best fit. If we can find a strong correlation between two variables, then we can establish they have a strong relationship, meaning that there is a good probability that one variable influences the other.

    Bivariate data - Key takeaways

    • Bivariate data is the collection of two data sets, where each piece of data is paired with another from the other data set
    • We use a scatter graph to show bivariate data.
    • The correlation between bivariate data demonstrates how strong the relationship is between two variables.
    Learn faster with the 1 flashcards about Bivariate Data

    Sign up for free to gain access to all our flashcards.

    Bivariate Data
    Frequently Asked Questions about Bivariate Data

    What is bivariate data?

    Bivariate data is the collection of two data sets, where data in one set corresponds pairwise to the data in the other set.

    What is the difference between univariate and bivariate data?

    Univariate data is an observation on only one variable, whilst bivariate data is observation on two variables.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 4 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email