Unit Circle

Mobile Features AB

Let's look at the unit circle, how to construct one, and what it is useful for in maths.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Unit Circle Teachers

  • 3 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 01.12.2023
  • 3 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 01.12.2023
  • 3 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    What is the unit circle?

    The unit circle has a radius of 1, with a centre at the origin (0,0). Therefore the formula for the unit circle isx2+y2=1

    This is then used as a basis in Trigonometry to find trigonometric functions and derive Pythagorean identities.

    Unit Circle StudySmarterThe unit circle

    We can use this circle to work out the sin, cos and tan values for an angle 𝜃 between 0 ° and 360 ° or 0 and 2𝜋 Radians.

    unit circle sin cos tan StudySmarterSin, cos and tan on the unit circle

    What is the unit circle used for?

    For any point on the circumference of the unit circle, the x-coordinate will be its cos value, and the y-coordinate will be the sin value. Therefore, the unit circle can help us find the values of the trigonometric functions sin, cos and tan for certain points. We can draw the unit circle for commonly used Angles to find out their sin and cos values.

    Unit Circle StudySmarterThe unit circle Image: public domain

    The unit circle has four quadrants: the four regions (top right, top left, bottom right, bottom left) in the circle. As you can see, each quadrant has the same sin and cos values, only with the signs changed.

    How to derive sine and cosine from the unit circle

    Let's look at how this is derived. We know that when 𝜃 = 0 ° , sin𝜃 = 0 and cos𝜃 = 1. In our unit circle, an angle of 0 would look like a straight horizontal line:

    Unit Circle StudySmarterThe unit circle for 𝜃 = 0

    Therefore, as sin𝜃 = 0 and cos𝜃 = 1, the x-axis has to correspond to cos𝜃 and the y-axis to sin𝜃. We can verify this for another value. Let's look at 𝜃 = 90 ° or 𝜋 / 2.

    Unit Circle StudySmarterThe unit circle for 𝜃 = 90

    In this case, we have a straight vertical line in the circle. We know that for 𝜃 = 90 ° , sin 𝜃 = 1 and cos 𝜃 = 0. This corresponds to what we found earlier: sin 𝜃 is on the y-axis, and cos 𝜃 is on the x-axis. We can also find tan 𝜃 on the unit circle. The value of tan 𝜃 corresponds to the length of the line that goes from the point on the circumference to the x-axis. Also, remember that tan𝜃 = sin𝜃 / cos𝜃.

    trigonometry unit circle sin cos tan StudySmarter

    The unit circle for sin, cos and tan

    The unit circle and Pythagorean identity

    From Pythagoras' theorem, we know that for a right-angled triangle a2+b2=c2. If we were to construct a right angled triangle in a unit circle, it would look like this:

    trigonometry unit circle sin and cos StudySmarterThe unit circle with sin and cos

    So a and b are sin𝜃, and cos𝜃 and c is 1. Therefore we can say: sin2𝜃+cos2𝜃=1 which is the first Pythagorean identity.

    Unit Circle - Key takeaways

    • The unit circle has a radius of 1 and a centre at the origin.

    • The formula for the unit circle is x2+y2=1.

    • The unit circle can be used to find sin and cos values for Angles between 0 ° and 360 ° or 0 and 2𝜋 Radians.

    • The x-coordinate of points on the circumference of the unit circle represents the cos value of that angle, and the y-coordinate is the sin value.

    Learn faster with the 0 flashcards about Unit Circle

    Sign up for free to gain access to all our flashcards.

    Unit Circle
    Frequently Asked Questions about Unit Circle

    What is a unit circle?

    A unit circle is a circle with a radius of 1 and a centre at the origin used to find values of and understand trigonometric functions like sin, cos and tan for different angles.

    What is sin and cos on the unit circle?

    Cos is the x-coordinate of a point on the circumference of the circle and sin is its y-coordinate.

    What is the unit circle used for?

    The unit circle is used for finding the values of different trigonometric functions for angles in degrees or radians.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 3 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email