Multiplication and Division of Fractions

Mobile Features AB

John was invited to Amy's birthday, and she has invited in total 7 friends to celebrate her birthday. To have equal cake pieces, each of the attendees would have \(\frac{1}{8}\) of the cake. Accidentally, Amy dropped her piece of cake, so John decided to give her a part of his. He divided his piece of cake by 2 and gave Amy half.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Multiplication and Division of Fractions Teachers

  • 10 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 01.12.2023
  • 10 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 01.12.2023
  • 10 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Can we calculate what fraction of the cake Amy got in the end? The answer is dividing the fraction of John by 2, that is, \(\dfrac{\dfrac{1}{8}}{2}=\dfrac{1}{16}\) of the cake.

    In this article, we will learn to do the operations of multiplication and division with fractions.

    Multiplication and Division of Fractions Step by Step

    We are interested in looking at the operations of multiplication and division on fractions. Foremost, let's recall our knowledge on fractions.

    A fraction represents a part of a whole. It has two parts – the numerator and the denominator. The numerator is written above the line and the denominator is written below the line. The denominator cannot be zero.

    \(\dfrac{2}{3}, \dfrac{1}{2}, \dfrac{7}{8}, \cdots\) are examples of fractions.

    We are familiar with multiplying and dividing two numbers. Now the question is how to perform these operations on fractions instead of whole numbers.

    Suppose you are given two fractions, say \(\dfrac{a}{b}\) and \(\dfrac{c}{d}\), we want to know what do we mean by \(\dfrac{a}{b}\times \dfrac{c}{d}\) and \(\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}.\)

    Multiplication and division of fractions rules

    Multiplication of fractions rules

    To multiply two fractions \(\dfrac{a}{b}\) and \(\dfrac{c}{d}\), you essentially multiply the numerators together and the denominators together. Thus. we have

    \[\dfrac{a}{b}\times \dfrac{c}{d}=\dfrac{a\times b}{c\times d}.\]

    We, in fact, follow the following steps to multiply fractions together.

    Step 1. Multiply the numerators of the two fractions together and the denominators together.

    Step 2. Divide the resultant numbers to get the new fraction.

    We can stop at this point. However, if the numerator and denominator of the new fraction have common factors, we proceed with another step to obtain the simplest form of the fraction.

    Step 3. Find the common factor of the numerator and denominator of the new fraction. Divide the numerator and denominator by this common factor. This gives the simplest form of the fraction.

    Multiply the fractions \(\dfrac{3}{7}\) and \(\dfrac{5}{11}\).

    Solution

    Step 1. Multiplying the numerators of the fractions together, we get \[3\times 5=15.\]

    Multiplying the denominators of the fractions together, we get

    \[7\times 11=77.\]

    Step 2. Dividing the resultant numbers gives the new fraction \(\dfrac{15}{77}.\)

    Since the numerator and denominator of the new fraction do not have any common factors, this is the simplest form.

    Multiply \(\dfrac{2}{5}\) and \(\dfrac{7}{9}\).

    Solution

    Multiplying the numerators and denominators, we get

    \[\dfrac{2}{5}\times \dfrac{7}{9}=\dfrac{2\times 7}{5 \times 9}=\dfrac{14}{45}.\]

    Multiply \(\dfrac{5}{8}\) and \(\dfrac{2}{3}.\)

    Solution

    Step 1. Multiplying the numerators of the two fractions together, we get

    \(5 \times 2=10.\) Similarly, doing the same with the denominators gives \(8\times 3=24.\)

    Step 2. Dividing the resultant numbers gives us the new fraction \(\dfrac{10}{24}.\)

    We notice that the numerator and denominator of the new fraction have a common factor of 2.

    Step 3. We get the simplest form of this fraction by dividing out the common factor 2 from the numerator 10 and the denominator 24. This gives us, \(10 \divsymbol 2=5\) and \(24\divsymbol 2=12\).

    The simplest fraction is therefore \(\dfrac{5}{12}.\)

    Division of fractions rules

    To divide two fractions, you essentially invert the fraction you are dividing with and then multiply it with the former. So the division of two fractions of the form

    \[\frac{a}{b}\divsymbol\frac{c}{d}=\frac{\frac{a}{b}}{\frac{c}{d}}\]

    is the same as multiplying the fractions

    \[\frac{a}{b}\times \frac{d}{c}.\]

    And thus we have

    \[\frac{a}{b}\divsymbol\frac{c}{d} =\frac{a}{b}\times\frac{d}{c}.\]

    Since we saw already how to multiply two fractions, you just follow those steps from here.

    In summary, we follow the following steps to perform division on fractions,

    Step 1. Invert the divisor fraction – the numerator becomes the denominator and the denominator becomes the numerator.

    Step 2. After inversion, multiply the resultant fractions together using the steps described for the multiplication of fractions.

    Divide \(\dfrac{5}{8}\) by \(\dfrac{2}{3}.\)

    Solution

    Step 1. Inverting the divisor, we get \(\dfrac{3}{2}\).

    Step 2. Now we perform the multiplication of the obtained fractions,

    \(\dfrac{5}{8}\) and \(\dfrac{3}{2}\) to get,

    \[\dfrac{5}{8}\times \dfrac{3}{2}=\dfrac{5\times 3}{8\times 2}=\dfrac{15}{16}.\]

    Since the numerator and denominator have no common factors, this is the simplest form.

    Find \(\dfrac{2}{5}\divsymbol \dfrac{3}{8}\).

    Solution

    Here \(\dfrac{2}{5}\)is the dividend fraction and \(\dfrac{3}{8}\)is the divisor fraction.

    Step 1. Invert the divisor, we get \(\dfrac{8}{3}.\)

    Step 2. Now multiply the fractions we get,

    \[\frac{2}{5}\divsymbol\frac{3}{8}=\frac{2}{5}\times \frac{8}{3}=\frac{2\times 8}{3\times 5} =\frac{16}{15}.\]

    Since the numerator and denominator has no common factors, this is the simplest form.

    When multiplying or dividing a fraction with a whole number \(a\), \(a\) can be written as its equivalent form \(\dfrac{a}{1}\) and thus no change in procedure is required.

    Find \(\dfrac{\dfrac{2}{5}}{3}.\)

    Solution

    Here \(\dfrac{2}{5}\)is the dividend fraction and \(3=\dfrac{3}{1}\) is the divisor fraction.

    Step 1. Invert the divisor, we get \(\dfrac{1}{3}\).

    Step 2. Now multiply the fractions to get,

    \[\dfrac{2}{5}\times \dfrac{1}{3}=\dfrac{2\times 1}{5\times 3}=\dfrac{2}{15}.\]

    Since the numerator and denominator have no common factors, this is the simplest form.

    Simplify \(\dfrac{4}{\dfrac{7}{9}}\).

    Solution

    Here \(4=\dfrac{4}{1}\)is the dividend fraction and \(\dfrac{7}{9}\)is the divisor fraction.

    Solution

    Step 1. Invert the divisor, we get \(\dfrac{9}{7}\).

    Step 2. Now multiply the fractions together to get,

    \[\dfrac{4}{\dfrac{7}{9}}=\dfrac{4}{1}\times \dfrac{9}{7}=\dfrac{4\times 9}{1\times 7}=\dfrac{36}{7}.\]

    Since the numerator and denominator have no common factors, this is the simplest form.

    To simplify our work by avoiding giant multiplications, we can “cancel” common factors between the numerators and denominators in the beginning before we multiply the terms together. This would modify the steps for multiplying fractions together to the following,

    Step 1. If any numerator and denominator have a common factor, divide the corresponding numerator and denominator by the common factor to “cancel out” the common factor. Do this until no common factors remain between numerators and denominators.

    Step 2. Perform multiplication of the resultant fractions.

    In the following examples, we have used the aforementioned method.

    Examples of Multiplication and Division of Fractions

    So far, we have looked at examples involving operations of multiplication and division between two fractions. You can multiply/divide multiple fractions together using the same rules as described above. If there is a chain of multiple multiplications and divisions, you must first invert the divisor terms.

    Simplify \(\dfrac{5}{9}\times\dfrac{18}{13}\times\dfrac{21}{20}\)

    Solution

    Here we have three fractions under multiplication. The first step is to multiply the numerators of the fractions together \(5\times 18\times 21\) and the denominators together \(9\times 13\times 20.\)

    We see here that we end up with a multiplication of huge numbers. To avoid this, we are going first to cancel the common factors, where possible.

    Step 1 . The numerators are 5,18,21 and the denominators are 9,13,20. We see 9 and 18 has 9 as common factor and 5 and 20 has 5 as a factor, thus we have

    \[\frac{5}{9}\times\dfrac{18}{13}\times\dfrac{21}{20}=\dfrac{1}{1}\times\dfrac{2}{13}\times\dfrac{21}{4}.\]

    Further, we can simplify 2 and 4 by dividing by 2, to get

    \[\dfrac{5}{9}\times\dfrac{18}{13}\times\dfrac{21}{20}=\dfrac{1}{13} \times\dfrac{21}{2}.\]

    Step 2. And the final answer is,

    \[\dfrac{5}{9}\times\dfrac{18}{13}\times\dfrac{21}{20}=\dfrac{21}{13\times 2}=\dfrac{21}{26}.\]

    Simplify

    \[\dfrac{14}{39}\times\dfrac{12}{35}\divsymbol\dfrac{8}{13}\times\dfrac{2}{9}\]

    Solution

    Step 1. Invert the divisor fraction to get,

    \[\dfrac{14}{39}\times\dfrac{12}{35}\divsymbol\dfrac{8}{13}\times\dfrac{2}{9}=\dfrac{14}{39}\times\dfrac{12}{35}\times\dfrac{13}{8}\times\dfrac{2}{9}\]

    Step 2. Now we try to bring the terms to the simplest form. Dividing 14 and 35 by 7, 13 and 39 by 13, 12 and 9 by 3, 2 and 8 by 2 we get,

    \[\dfrac{14}{39}\times\frac{12}{35}\times\dfrac{13}{8}\times\dfrac{2}{9}=\dfrac{2}{3}\times\dfrac{4}{5}\times\dfrac{1}{4}\times\dfrac{1}{3}\]

    Step 3. Cancel out the 4, we get\[\dfrac{2}{3}\times\dfrac{4}{5}\times\dfrac{1}{4}\times\dfrac{1}{3}=\dfrac{2}{5}\times\dfrac{1}{5}\times \dfrac{1}{3}=\dfrac{2}{45}.\]

    In the next example, we perform multiplication and division of mixed fractions.

    A mixed fraction is a combination of a whole number and a fraction. To multiply or divide mixed fractions, first, convert them into improper fractions and then continue with the standard process.

    Simplify

    \[4\dfrac{2}{7}\times 2\dfrac{1}{3}\div \dfrac{3}{5}.\]

    Solution

    Converting the mixed fractions into improper fractions, we get,

    \[4\dfrac{2}{7}\times 2\dfrac{1}{3}\div \frac{3}{5} = \dfrac{30}{7}\times \dfrac{7}{3} \div \dfrac{3}{5}.\]

    Inverting the divisor, we get,

    \[\dfrac{30}{7}\times\dfrac{7}{3}\div\dfrac{3}{5}= \dfrac{30}{7} \times \dfrac{7}{3} \times \dfrac{5}{3}\]

    Dividing 30 and 3 by 3, cancelling the 7 in the numerator and denominator, we have

    \[\dfrac{30}{7}\times\dfrac{7}{3}\times \dfrac{5}{3}= \dfrac{10}{1} \times \dfrac{1}{1} \times \dfrac{5}{3}.\]

    Multiplying the above fractions gives,

    \[\dfrac{10}{1}\times\dfrac{5}{3}= \dfrac{50}{3} = 16\dfrac{2}{3}.\]

    You can express your answer as a mixed fraction or improper fraction as necessary.

    Multiplication and Division of Algebraic fractions

    You can perform multiplication and division on algebraic fractions containing variable in the numerator and/or denominator, following the same steps that we have been using so far.

    Simplify \(\dfrac{4xy}{5} \times \dfrac{2y}{x^3}\div \dfrac{y}{x}\).

    Solution

    Inverting the divisor, we get

    \[\dfrac{4xy}{5} \times \dfrac{2y}{x^3} \div \dfrac{y}{x} = \dfrac{4xy}{5} \times \dfrac{2y}{x^3} \times \dfrac{x}{y}.\]

    Dividing \(4xy\) and \(x^{3}\) by \(x\) and \(2y\) and \(y\) by \(y\), we get

    \[ \dfrac{4xy}{5}\times\dfrac{2y}{x^3}\times\dfrac{x}{y}= \dfrac{4y}{5} \times \dfrac{2}{x^2} \times \dfrac{x}{1}.\]

    Dividing \(x^2\) and \(x\) by \(x\) we get,

    \[ \dfrac{4y}{5}\times\dfrac{2}{x^2}\dfrac{x}{1}= \dfrac{4y}{5} \times \dfrac{2}{x} \times \dfrac{1}{1}\]

    Multiplying the above fractions gives,

    \[ \dfrac{4y}{5}\times\dfrac{2}{x}\times\dfrac{1}{1}= \dfrac{8y}{5x}.\]

    Multiply \( 2y^3 + 3xy + 5x^2 + 7\) by \(4x^2\).

    Solution

    \[\begin{align} &(2y^3 + 3xy + 5x^2 + 7) \times 4x^2 \\ &= (2y^3 \times 4x^2) + (3xy\times 4x^2) + (5x^2\times 4x^2) + (7\times 4x^2)\\ &= 8x^2y^3 + 12x^3 y + 20x^4 + 28x^2.\end{align}\]

    Simplify \(\dfrac{2x^2 y^3}{7} \times \dfrac{14}{xy} \times \dfrac{y}{x^3}\).

    Solution

    Dividing \(2x^2y^3\) and \(xy\) by \(xy\), and 7 and 14 by 7, we get

    \[ \frac{2x^2y^3}{7} \times \frac{14}{xy} \times \frac{y}{x^3} = \frac{2xy^2}{1} \times \frac{2}{1} \times \frac{y}{x^3} .\]

    Dividing \(2xy^2\) and \(x^3\) by \(x\), we get,

    \[\frac{2xy^{2}}{1}\times\frac{2}{1}\times\frac{y}{x^3}= \frac{2y^2}{1} \times \frac{2}{1} \times \frac{y}{x^2} .\]

    Multiplying the above fractions, we get

    \[ \frac{2y^2}{1} \times \frac{2}{1} \times \frac{y}{x^2} = \frac{4y^3}{x^2}. \]

    Multiplication and Division of Fractions - Key takeaways

    • To multiply fractions, you essentially multiply the numerators together and the denominators together. So a multiplication of the form\( \dfrac{a}{b}\times \dfrac{c}{d}\) is equivalent to \(\dfrac{a\times c}{b\times d}.\)
    • To divide a number(whole number or fraction) with a fraction, we have first to invert the divisor and to apply the multiplication process to the remaining of the expression.
    • To multiply or divide mixed fractions, first convert them into improper fractions and then continue with the standard process.
    Learn faster with the 0 flashcards about Multiplication and Division of Fractions

    Sign up for free to gain access to all our flashcards.

    Multiplication and Division of Fractions
    Frequently Asked Questions about Multiplication and Division of Fractions

    How do you multiply and divide fractions?

    To multiply fractions, you multiply the numerators together and the denominators together. To divide a number with a fraction, we have to first invert the divisor, and then multiply the resultant expression.

    What are examples of multiplication and division of fractions?

    2/3×6/5=4/5

    4/5÷3/5=4/3

    How to multiply and divide fractions step by step?

    Follow the following steps to multiply fractions together:

    Step 1) If any numerator and denominator have a common factor, divide the corresponding numerator and denominator by the common factor to “cancel” the common factor. Do this until no common factors remain between numerators and denominators.

    Step 2) Multiply the resultant numerators together and the denominators together.

    Step 3) This gives you the result of the fraction multiplication

    To divide fractions together, invert the divisor and then proceed with the multiplication procedure described above.

    How do you divide fractions with different denominators? 

    When dividing fractions, we multiply the dividend fraction by the inverse of the second fraction. To do the multiplication process, we simply multiply the numerators together and the denominators together. 

    Do you divide by the numerator or denominator? 

    In a fraction, the numerator is divided by the denominator. 

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 10 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email