Suppose you know the probability of two events occurring. How would you go about finding the probability of both events occurring? How would you go about finding the probability of either events occurring? Questions like this will depend on the probabilistic relationship between the two events. There are many different approaches to take which will depend on the scenario you are given. This article will cover some of the scenarios that you may be faced with.
The relationship between events
If we want to find the probability of a combined event, we must understand the relationship between the events. There are two types that you should look out for: independent and mutually exclusive events.
Independent events
Two events are independent if the outcome of one does not affect the probability of the other. This is defined mathematically as:
.
In other words, if two events are independent, then the intersection of the events (i.e. the probability of A and B happening) is equal to the product of the events. This is something called the product rule or the 'and' rule.
Venn diagram of independent events
A couple have two children. What is the probability that both are boys?
Solution
Given that there is an equal probability of having either a boy or a girl, the probability of one child being a boy is .
Since the outcome of the first child (whether the first child is a boy or a girl) doesn't effect the outcome of the second, we can say that the sex of each child is independent. Therefore:
Mutually exclusive events
Mutually exclusive events cannot occur at the same time.
If two events are mutually exclusive, the probability of either of the events occurring (but not both) equals the sum of the probabilities of the two events.
In other words, if two events are mutually exclusive and we want to find out the probability of either event occurring, we need to sum the probabilities of the two events. This is sometimes called the sum rule or the 'or' rule.
Venn diagram of mutually exclusive events
You roll a standard 6-sided dice. What is the probability that you roll either a 3 or a 5?
Solution
Since you cannot roll both 3 and 5 at the same time, these two events are mutually exclusive. This means that we can apply the 'sum' rule:
Listing outcomes
Listing outcomes may sometimes be a more practical way to find the probability of combined events. This method utilises the basic probability formula:
By listing all the possible outcomes, given that they are all equally likely to happen, you can find the probability of a particular combination of events.
You must be careful to list the outcomes systematically to ensure you don't miss out any outcomes.
There are 4 identical red apples. Two of them are poisonous and the remaining two are harmless. The poison isn't very strong, however. You will only die if you eat both poisonous apples consecutively.
You eat three of the apples. What is the probability that you live?
Solution
Let us denote the poisonous apples as 'P' and the regular apples as 'A'. The combination of all possible outcomes is as follows:
AAP, APA, PAA, PAP, PPA, APP
You will die only if you consume two poisonous apples consecutively. Therefore, you will survive if the outcome is AAP, APA, PAA or PAP. Using the basic probability formula:
Therefore the probability of surviving is
Conditional probability
If you ever see the phrase "given that" in a question, it will definitely be a question about conditional probability. You could be asked to find the probability of event B given that A has occurred (using mathematical notation: , where "|" means "given that").
There is a rule which can be applied to these sorts of questions:
or
45% of pet owners own dogs, and 4% own both cats and dogs. Given that someone owns a dog, how likely is it that they also own a cat?
Solution
First, use the conditional probability formula to express the question mathematically:
Next, input the numbers from the question and compute the answer:
to 3 s.f.
Probability trees
It also may be beneficial to use a probability tree to find conditional probabilities. This method helps students analyse and visualise a question which may not be immediately obvious.
The rate of infection of a particular disease in a population is 1%. The test for this disease is accurate 99% of the time. Demonstrate this information using a probability tree.
Solution
If the test is 99% accurate, this means that:
- if you test positive, there is a 99% chance you have the disease
- if you test negative, there is a 99% chance you don't have the disease
We can illustrate this as follows:
Tree diagram 1
The second column of branches, labelled "infected" and "healthy", indicate conditional probabilities.
For example, the outer branches indicate the probability that someone is infected given that they test positive:
Tree diagram 2
We can use this diagram to, for example, find the probability that someone is infected given that they test negative. Read off the diagram as follows:
Tree diagram 3
We can see that .
Another interpretation is that the information to the left of the "given that" symbol indicates the outcome of the first branch. The information to the right of the "given that" symbol indicates the outcome of the second set of branches.
Take the scenario in the example above. What is the probability that someone is both infected and tests negative?
Solution
First, reformulate the question using the conditional probability formula:
From our tree diagram above, we know that the probability that someone is infected given that they test negative is 0.01. We also know that the overall probability of someone testing negative is 0.99.
Input these probabilities and rearrange:
Therefore the probability of testing negative and being infected with the disease is 0.0099.
Probabilities of Combined Events - Key takeaways
- Two events are independent if the outcome of one does not affect the probability of the other
- The mathematical definition of independence is
- Mutually exclusive events cannot occur at the same time
- If two events are mutually exclusive, the probability of either of the events occurring (but not both) equals the sum of the probabilities of the two events:
- By listing all the possible outcomes, given that they are all equally likely to happen, you can find the probability of a particular combination of events
- The mathematical notation for the probability of "A given B" is
- The conditional probability formula is
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel