Continuous and Discrete Data

Mobile Features AB

Your teacher asks you to determine the Number of people in your class who are taller than 170 cm. To complete this task, you'll have to do two things: measure the heights of all your classmates and then, from those heights, count how many people are taller than 170 cm. In doing this, you will have collected three different types of data: discrete, continuous and grouped. This article will dive deeper into what exactly discrete, continuous and grouped data is, the Graphs associated with them, as well as cover examples on how to identify these different types of data. 

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Continuous and Discrete Data Teachers

  • 9 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 01.12.2023
  • 9 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 01.12.2023
  • 9 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Definition of continuous and discrete data

    In the scenario above, the Number of people taller than 170 cm was an example of discrete data. You will have had to count all your classmates taller than 170 cm to determine the exact number. From this, we arrive at the following definition for discrete data:

    Discrete data is data that can be counted.

    Using the same scenario, the heights of your classmates was an example of continuous data. You determine their heights by measuring each classmate. Each person's height will fall into a range of possible heights for humans. From this, we can define continuous data:

    Continuous data is measured data that can be of any value within a range.

    Difference between continuous and discrete data

    Discrete data is countable whereas continuous data can only be measured, with the most common examples of continuous data being height and weight.

    If a 500 g bag of sweets contains 7 sweets, then the discrete data in this scenario would be the number of sweets as it is a countable value, whereas the weight of the bag would be continuous data as it is a value that you measure.

    Continuous data falls within a range of reasonable values, whereas discrete data can only be one finite value (e.g. there can only be a certain number of sweets in a bag).

    The table below summarizes the differences between continuous and discrete data:

    Discrete dataContinuous data
    Data that is countedData that is measured
    Can only be one finite valueCan be any value within a reasonable range.

    An easy way to remember the difference between continuous and discrete data is to think of discrete data as data that you can count on your fingers.

    Discrete and continuous data examples

    The following examples will demonstrate how to identify whether data is discrete or continuous.

    A box of 10 books is placed on a scale. The scale reads 8 kg. Identify the discrete and continuous data in this situation.

    Solution

    The number of books in the box is the discrete data. The exact number of books would have been determined by counting them, hence why it's discrete data.

    The weight of the box is continuous data, as its value of 8 kg was measured using a scale.

    Let's look at another example.

    A sprinter takes 17.2 s to run 100 m at a speed of 21 km/h. Identify the data in this situation.

    Solution

    The time of 17.2 seconds is continuous data.

    The speed at which the sprinter runs is also continuous data.

    Grouped data

    Another very common data type is grouped data.

    Grouped data is data that is given in intervals.

    It is most often used with continuous data types. With grouped data, values are no longer represented individually, but are instead grouped into intervals.

    The following example demonstrates how one can go about grouping data:

    You are asked to record your classmate's heights and present a summary of the results to your principal. One way of doing this would be to list each student's height next to their name, but an easier way of showing this could be to represent it by choosing ranges of heights and listing the number of students that fall within each range.

    The ranges you decide on are as follows:

    \[ \begin{align} &150 - 159\text{ cm} \\ &160 - 169\text{ cm} \\ &170 - 179\text{ cm} \\ &180\text{ cm}+ \end{align}\]

    After measuring each of your 15 classmates and making a mark next to each range they fall within, you tally the results to get:

    HeightsNumber of students
    \(150 - 159\text{ cm}\)3
    \(160 - 169\text{ cm}\)6
    \(170 - 179\text{ cm}\)5
    \(180\text{ cm}+ \)1

    This is grouped data as you have grouped all the students who fall within a specific interval together instead of representing each of their heights individually.

    Please note that the number of students that fall within each interval is discrete data, but their heights are still considered to be continuous data.

    It is important to ensure that your intervals do not overlap as that could result in something falling within two intervals and this could cause the data to be misrepresented.

    Graphs of discrete and continuous data

    There are various Graphs that can be used to represent the different types of data.

    Discrete data graphs

    Scatter graphs are often used to represent discrete data. Each point on the graph represents one data value.

    Discrete data can also be represented by Bar graphs.

    A class of 20 students was asked to raise their hands when their favourite subject was called. The teacher counted five hands for Mathematics, seven hands for biology, two hands for geography and six hands for chemistry.

    The teacher decided that the best way to visualize the data was to make use of a bar graph, so she made the following:

    Discrete, continuous and grouped data bar graph of favourite subjects StudySmarterFig. 1. Bar graph showing students favourite subjects.

    As you can see, there are multiple values that the teacher counted. Each one of these is of the discrete data type. Each bar on the graph represents a subject, and the top of each bar coincides with the number of students, as shown on the y-axis.

    Continuous data graphs

    Continuous data is most often represented using line graphs, but can also be represented using scatter plots and bar graphs.

    Your teacher asks you to collect a set of continuous data and represent it in a graph. You decide to record the temperature at 9am every day for a week, using the thermometer in your geography classroom.

    You record the following values:

    DayTemperature (\(^\circ\)C)
    Monday22
    Tuesday25
    Wednesday19
    Thursday23
    Friday26
    Saturday20
    Sunday25

    To represent this data, you could choose a line graph:

    Discrete, continuous and grouped data Line graph of temperatures over week StudySmarterFig. 2. Line graph showing the temperatures recorded on each day of the week.

    The shape of the graphs helps show how the temperature varies throughout the week.

    Alternatively, you could choose to represent the data with a scatter plot and a line of best fit:

    Discrete, continuous and grouped data Scatter plot with seven plotted points. The plotted points are evenly spaced along the x-axis and each one represents the temperature on a day of the week, starting at Monday and ending at Sunday. A line of best fit is drawn on the plot StudySmarter OriginalsFig. 3. Scatter plot showing the temperature recorded on each day of a week.

    As shown in the diagram, a line of best fit can be used to see if there is any linear correlation between the data.

    Continuous data can also be represented by bar graphs, as shown in the following example:

    Using the same values as from the previous example, you can represent the temperatures using a bar graph:

    Discrete, continuous and grouped data bar graph of temperature over week StudySmarterFig. 4. Bar graph showing the temperatures recorded on each day of the week.

    Data, such as your classmates heights, could be represented using a scatter graph, but is better suited to grouped data graphs that are covered in the next section.

    Grouped data graphs

    Grouped data is best represented using cumulative frequency graphs and histograms, but it can also be represented using other graphs such as bar graphs.

    Following on from the heights example in the grouped data section above, you can plot a graph of the results.

    Remember that these were the heights you recorded:

    HeightsNumber of students
    \(150 - 159\text{ cm}\)3
    \(160 - 169\text{ cm}\)6
    \(170 - 179\text{ cm}\)5
    \(180\text{ cm}+\)1

    The easiest way to show this spread of data would be to use a histogram.

    Check out the article on Histograms for an in-depth explanation of how to plot a histogram.

    Using the \(x\)-axis to represent the range of heights and the \(y\)-axis to represent the number of students, you will end up with a histogram that looks like the following:

    Discrete, continuous and grouped data histogram of heights StudySmarterFig. 5. Histogram showing the heights of the students in a class.

    Alternatively, you could represent the data using a cumulative frequency graph:

    Discrete, continuous and grouped data cumulative frequency graph of heights StudySmarterFig. 6. Cumulative frequency graph showing the heights of the students in a class.

    The article Cumulative Frequency covers cumulative frequency graphs in more depth.

    You and your family want to go to a trampoline park, but you all need special socks to be allowed to jump. The socks only come in the following sizes:

    • Size A - fits shoe sizes 1-3
    • Size B - fits shoe sizes 4-6
    • Size C - fits shoes sizes 7-9
    • Size D - fits shoe sizes 10-12

    Your mother tasks you with collecting the shoes sizes of each family member and tallying the total number of pairs of socks needed per size. Anybody who wears half sizes must take the next size up. She is also a school teacher and asks you to represent this data in a graph as well for extra practice for your upcoming exams.

    First, you show the data in a table:

    Shoe sizes Number of family members
    1-32
    4-65
    7-93
    10-121

    Next, you draw a histogram to represent the data:

    Discrete, continuous and grouped data Histogram of shoe sizes StudySmarterFig. 7. Histogram showing the shoe sizes and pairs of socks needed for each member of a family.

    Discrete, continuous and grouped data - Key takeaways

    • Discrete data is data that is counted and can only be one value.
    • Continuous data is data that is measured, and it can be any value within a range.
    • Grouped data is data that is given within ranges.
    • Bar graphs are frequently used to represent discrete data.
    • Line graphs are most often used to represent continuous data.
    • Histograms and cumulative frequency graphs are often used to represent grouped data.
    Frequently Asked Questions about Continuous and Discrete Data

    What is continuous and discrete data? 

    Discrete data can be counted.  Continuous data must be measured.

    What is the difference between discrete and continuous data? 

    Discrete data can be counted.  Continuous data must be measured.

    What are examples of discrete data? 

    Examples of discrete data would be the number of pieces of candy in a bag, or the number of times you exercise in a week.

    What are examples of continuous data? 

    Examples of continuous data include height and weight.

    What are grouped and ungrouped data? 

    Grouped data is given in intervals and are most often continuous data types.  Data that is not grouped is called ungrouped.

    Save Article

    Test your knowledge with multiple choice flashcards

    Histograms are best used to represent discrete data.

    Discrete data is countable.

    Grouped data typically consists of...

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 9 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email