Volume of Pyramid

Mobile Features AB

Do you know that the Great Pyramid of Giza measures about 146.7 m high and 230.6 m in base length? Can you imagine how many cubes of sugar measuring 1 m3 would be needed to fill the Great Pyramid of Giza? Herein, you shall be learning about how this can be calculated through the knowledge of the volume of pyramids.

Get started

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Volume of Pyramid Teachers

  • 6 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 10.06.2022
  • 6 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 10.06.2022
  • 6 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    What is a pyramid?

    Pyramids are 3-dimensional objects with triangular sides or surfaces that meet at a tip called an apex. The name 'pyramid' often brings to mind the Pyramids of Egypt, which is one of the seven wonders of the world.

    In geometry, a pyramid is a polyhedron obtained connecting a polygonal base to a point, called the apex.

    Types of pyramids

    Pyramids are of various types depending on the shape of their base. A pyramid with a triangular base is called a triangular pyramid, and a rectangular-based pyramid is known as a rectangular pyramid. The sides of a pyramid are triangular and they emerge from its base. They all meet at a point called the apex.

    Volume of Pyramids An image showing the various types of pyramids StudySmarterAn image showing the various types of pyramids, Njoku - StudySmarter Originals

    What is the volume of a pyramid?

    You may be wondering how many blocks of sand can make up the Egyptian pyramids. The volume of a pyramid is the space enclosed by its faces. Generally, the volume of a pyramid is a-third of its corresponding prism. Its corresponding prism has the same base shape, base dimensions and height. Thus, the general formula for calculating the volume of a pyramid is,

    V=13×bh

    where,

    V is the volume of the pyramid

    b is the base area of pyramid

    h is the height of pyramid

    Note that this is the general formula for the volume of all pyramids. Differences in the formulas are based on the shape of the base of the pyramid.

    Volume of rectangular pyramids

    The volume of rectangular pyramids can be found by multiplying a third of the rectangular base area by the height of the pyramid. Therefore:

    Volume of rectangular pyramid=13×base Area×heightBase area=length×breadthVolume=13×l×b×h

    where;

    l is the length of the base

    b is the breadth of the base

    h is the height of the pyramid

    Volume of Pyramids An illustration of the sides of a rectangular pyramid StudySmarterAn illustration of the sides of a rectangular pyramid, Njoku - StudySmarter Originals

    This means that the volume of a rectangular pyramid is a third of the corresponding rectangular prism.

    Volume of square-base pyramids

    A square base pyramid is a pyramid whose base is a square. The volume of square-based pyramids can be gotten by multiplying one-third of the square base area by the height of the pyramid. Therefore:

    Volume of square base pyramid=13×base Area×heightBase area=length2Volume=13×l2×h

    where;

    l is the length of the square base

    h is the height of the pyramid

    Volume of Pyramids An illustration of the sides of a square base pyramid StudySmarterAn illustration of the sides of a square base pyramid, Njoku - StudySmarter Originals

    Volume of triangular-based pyramids

    The volume of triangular base pyramids can be obtained by multiplying one-third of the triangular base area by the height of the pyramid. Therefore:

    Volume of triangular base pyramid=13×base Area×heightBase area=12×base length×height of triangleVolume=13×12×b×htriangle×hpyramidV=16×b×htriangle×hpyramid

    where;

    l is the length of the base

    b is the triangular base length

    htriangle is the height of the triangular base

    hpyramid is the height of the pyramid

    Volume of Pyramids An illustration of the sides of a triangular pyramid StudySmarterAn illustration of the sides of a triangular pyramid, Njoku - StudySmarter Originals

    Volume of hexagonal pyramids

    The volume of hexagonal base pyramids can be gotten by multiplying one-third of the hexagonal base area by the height of the pyramid. Therefore:

    Volume of triangular base pyramid=13×base Area×heightBase area=332×length2Volume=13×332×l2×hVolume=32×l2×h

    Volume of Pyramids An illustration of the sides of a hexagonal pyramid StudySmarter An illustration of the sides of a hexagonal pyramid, Njoku - StudySmarter Originals

    A pyramid of height 15ft has a square base of 12 ft. Determine the volume of the pyramid.

    Solution

    Volume of square base pyramid=13×l2×hl=12fth=15ftV=13×122×15V=5×144V=720ft3

    Calculate the volume of the figure below:

    Composition of Pyramid and Cuboid

    Solution

    The volume of the figure=volume of rectangular pyramid + volume of rectangular prismVolume of rectanglar pyramid= 13×l×b×hl=45 cmb=20 cmh=50 cmVolume of rectanglar pyramid= 13×45×20×50Volume of rectanglar pyramid= 15000 cm3Volume of rectangular prism=l×b×hl=45 cmb=20 cmh=40 cmVolume of rectangular prism=45×20×40Volume of rectangular prism=36000 cm3The volume of the figure=volume of rectangular pyramid + volume of rectangular prismThe volume of the figure=15000+36000The volume of the figure=51000 cm3

    A hexagonal pyramid and a triangular pyramid are of the same capacity. If its triangular base has a length of 6 cm and a height of 10 cm, calculate the length of each side of the hexagon when both pyramids have the same height.

    Solution

    The first step is to express the relationship in an equation.

    According to the problem, the volume of the triangular pyramid equals the volume of the hexagonal pyramid.

    Let bt signify the base area of triangular base and bh represent the base area of hexagonal base.

    Then:

    Volume of triangular pyramid=Volume of hexagonal pyramidbth3=bhh3

    Multiply both sides of the equation by 3 and divide by h.

    bth3=bhh3bth3×3h=bhh3×3hbt=bh

    This means that the triangular base and the hexagonal base are of equal area.

    Recall that we are required to find the length of each side of the hexagon.

    bt=12×base length×heightbase length of triangle=6 cmheight of triangle=10 cmbh=332×l2

    Where l is the length of the side of a hexagon.

    Recall that bt = bh, then;

    12×6×10=332×l212×6×10×233=332×l2×233203=l2

    Take the roots of both sides of the equation.

    l2=11.547l=3.398 cm

    Thus each side of the hexagonal base is approximately 3.4 cm.

    Volume of Pyramid - Key takeaways

    • A pyramid is a 3-dimensional object with triangular sides or surfaces that meet at a tip called an apex
    • The various types of pyramids are based on the shape of their base
    • The volume of a pyramid is one-third the base area × height
    Learn faster with the 2 flashcards about Volume of Pyramid

    Sign up for free to gain access to all our flashcards.

    Volume of Pyramid
    Frequently Asked Questions about Volume of Pyramid

    What is the volume of a pyramid? 

    It is the capacity of a pyramid or the space it contains.

    What formula is used to determine the volume of a pyramid?

    The formula used in calculating the volume of a pyramid is one-third the volume of the corresponding prism.

    How do you calculate the volume of a pyramid with a square base? 

    The volume of a pyramid with a square base is calculated by finding the product of one-third of the area of one of the square bases and the height of the pyramid.

    How do you calculate the volume of a pyramid with a triangular base? 

    The volume of a pyramid with a triangular base is gotten by multiplying one third of the triangular base area by the height of the pyramid.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 6 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email