Volume of prisms

Mobile Features AB

Do you know that transparent glass prisms refract light, and when they do so to white light, they disperse it into various color spectra? 

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Volume of prisms Teachers

  • 7 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 02.06.2022
  • 7 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 02.06.2022
  • 7 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    In this article, you will learn about various prisms and how to determine their volume.

    What is a prism?

    A prism is a 3-dimensional solid which has two opposing surfaces having the same shape and dimension. These opposing surfaces are often referred to as the base and top.

    We note that these surfaces may be repositioned such that the top and the base face sideways.

    Types of Prism

    There are several types of prisms. Each type is dependent on the shape of the opposing bases. If the opposing bases are rectangular, then it is called a rectangular prism. When these bases are triangular, they are called triangular prisms, and so on.

    Below are some types of prisms and their corresponding figures,

    • Square prism

    • Rectangular prism

    • Triangular prism

    • Trapezoidal prism

    • Hexagonal prism

    Volume of Prisms A diagram showing the types of prisms StudySmarter A diagram showing the types of prisms, StudySmarter Originals

    Volume of prism formula and equation

    To find the volume of a prism, you have to take into consideration the base surface area of the prism and the height. Thus, the volume of a prism is the product of its base area and height. So the formula is

    Volumeprism=Areabase×Heightprism =Ab×hp

    Application: How to calculate the volume of different types of prisms?

    The volume of different types of a prism is calculated using the general rule introduced earlier in the article. Hereafter, we show different direct formulas to compute volumes of different types of prisms.

    Volume of a rectangular prism

    A rectangular prism has a rectangular base. It is also called a cuboid.

    We recall the area of a rectangle is given by,

    Arearectangle =lengthrectangle×breadthrectangle=l×b

    Thus the volume of a rectangular prism is given by,

    Volumerectangular prism=Areabase×Heightprism= l×b×hp

    The length and width of a rectangular matchbox are 12 cm and 8 cm respectively, if its height is 5 cm, find the volume of the matchbox.

    Solution:

    We first write out the given values,

    l=12 cm, b=8 cm and hp=5 cm.

    The volume of the rectangular prism is thus,

    Vrectangular prism=Areabase×heightprism=Arectangle×heightprism=l×b×hp=12×8×5=480 cm3.

    Volume of a prism with triangular base

    A triangular prism has its top and base comprising similar triangles.

    We recall that the area of a triangle is given by,

    Areatriangle=12×lengthbase of triangle×heighttriangle =12×lbt×ht

    Thus, the volume of a triangular prism is given by,

    Volumetriangular prism=Areatraingular base×heightprism= 12×lbt×ht×hp

    A prism with a triangular base of a length of 10 m and a height of 9 m has a depth of 6 cm. Find the volume of the triangular prism.

    Solution:

    We first list the given values,

    lbt=10 cm, ht=9 cm,hp=6 cm.

    The volume of the triangular prism is given by

    Vprism=Areabase×heightprism=Areatriangle×heightprism=12×lbt×ht×hp=12×10×9×6=270 cm3.

    Volume of a prism with a square base

    All the sides of a square prism are squares. It is also called a cube.

    We recall that the area of a square is given by,

    Areasquare=lenghtsquare×breadthsquare=lengthsquare2

    The volume of a square prism is given by,

    Volumesquare prism=Areabase×heightprism=Areasquare×heightprism

    But, since this is a square prism, all sides are equal, and hence the height of the prism is equal to the sides of each square in the prism. Therefore,

    heightprism=lenghtsquare=breadthsquare

    Thus, the volume of a square prism or a cube is given by,

    Volumecube=Areasquare×heightprism=lengthsquare×heightsquare×heightprism =lsquare×lsquare×lsquare =lsquare3

    Find the volume of a cube with one of its sides of length 5 cm?

    Solution:

    We first write out the given values,

    lsquare=5 cm

    The Volume of a cube is given by,

    Volumecube=Areasquare×heightprism=lengthsquare×heightsquare×heightprism=lsquare×lsquare×lsquare

    =lsquare3=53=125 cm3

    Volume of a trapezoidal prism

    A trapezoidal prism has the same trapezium at the top and base of the solid. The volume of a trapezoidal prism is the product of the area of the trapezium and the height of the prism.

    We recall that they are of a trapezium is given by,

    Areatrapezium=12×heighttrapezium ×(top breadthtrapezium+down breadthtrapezium) Atrapezium=12×ht×(tbtrapezium+dbtrapezium)

    Thus the volume of a trapezium is given by,

    Volumetapezoidal prism=Areatrapezium×heightprism=12×ht×tbtrapezium+dbtrapezium×hp

    A sandwich box is a prism with the base of a trapezium breadths 5 cm and 8 cm with a height of 6 cm. If the depth of the box is 3 cm, find the volume of the sandwich.

    Solution:

    We first write out the known values, top breadth length is 5 cm, down breadth length is 8 cm, the height of trapezium is 6 cm, and the height of the prism is 3 cm.

    Thus, the volume of the trapezoidal prism is given by,

    Volumetrapezoidal prism=Areatrapezium×heightprism

    The area of the trapezium can be calculated using the formula,

    A=12×ht×(tbtrapezium+dbtrapezium)=12×6×(5+8)=3×13= 39 cm2

    Finally, the volume of the trapezoidal prism is

    Volumetrapezoidal prism=Areatrapezium×heightprism=39×3=117 cm3.

    Volume of a hexagonal prism

    A hexagonal prism has both a hexagonal top and base. Its volume is the product of the area of the hexagonal base and the height of the prism.

    We recall that the area of a hexagon is given by,

    Areahexagon=33lhexagon22

    We note that all sides of a regular polygon are equal. Thus,

    Volumehexagonal prism=Areahexagon×heightprism =33lhexagon22×hp.

    A hexagonal prism with one of its sides 7 cm, has a height of 5 cm. Calculate the volume of the prism.

    Solution:

    We first write out the known values, each side length of the hexagon is 7 cm and the height of the prism is 5 cm.

    Thus, the volume of the hexagonal prism is given by,

    Volumehexagonal prism=Areahexagon×heigthprism

    But,

    Areahexagonal base=33×l22=33×722=33×492=14732cm2

    Hence, we have

    Volumehexagonal prism=Areahexagon×heightprism=33×l22×hp=14732×5=73532 cm3

    Examples on volume of prisms

    A very useful application of the volume of prisms is the ability to find volumes of different shapes. We will see this in the following example.

    Determine the capacity of water that the figure can contain.

    Solution:

    The figure above consists of two prisms, a rectangular prism at the top and a trapezoidal prism at the base. To find the capacity, we need to find the volume of each.

    First, we will calculate the volume of the rectangular prism,

    Vrectangular prism=Arearectangle×heightrectangular prism=4×5×3=60 cm3.

    Next, we compute the Volume of the trapezoidal prism,

    Vtrapezoidal prism=Areatrapezium×heightprism=12×8×(5+12)×4=12×8×17×4=272 cm3.

    Then, the volume of the given figure can be calculated,

    Volumesolid=Vrectangular prism+Vtriangular prism=60+272=332 cm3.

    Therefore, to determine the capacity we need to convert to liters.

    Thus,

    1 cm3=0.001 liters332×0.001=0.332 liters.

    Volume of Prisms - Key takeaways

    • A prism is a 3-dimensional solid which has two of its opposing surface the same in both shape and dimension.
    • The various types of the prism are based on the shape of the base, such as rectangular, square, triangular, trapezoidal, and polygonal.
    • The volume of a regular prism is calculated by finding the product of the base area and the height of the prism.
    • Volume of different shapes can be calculated by carrying out simple arithmetic operations on separated regular prisms.
    Learn faster with the 0 flashcards about Volume of prisms

    Sign up for free to gain access to all our flashcards.

    Volume of prisms
    Frequently Asked Questions about Volume of prisms

    What is the volume of prism?

    The volume of a prism tells us how much it can contain or how much space it will occupy in a 3 dimensional solid.

    What is the equation for determining the volume of prism? 

    The equation for determining the volume of the prism is the Base Area times the Height of the prism.

    How do you find the volume of a rectangular prism?

    You calculate the volume of a rectangular prism by finding the product of the length, breadth, and height of the prism.

    How do you determine the volume of prism with square base ?

    You calculate the volume of a prism with a square base by finding the cube of one of its sides.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 7 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email