Squares

Mobile Features AB

Squares are one of the most common shapes that we can find, in fact it is one of the first shapes that we learn at a very young age. There are many things around us that can have a square shape, for example, windows, stamps, chocolate, one side of a die, a bread slice, an alarm clock, a pizza box, a cushion, a handbag, among many others. 

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Squares Teachers

  • 8 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 05.07.2022
  • 8 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 05.07.2022
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    In this article, we will define what a square is, its properties, the formulas for the area and perimeter of a square, and examples of their application.

    Definition of a Square

    A square is a quadrilateral with all its sides and all its angles equal in measure.

    Read about Quadrilaterals to refresh the basics.

    Examples of squares

    As mentioned at the beginning of this article, we can find square shapes in many things around us. Let's show you a few examples.

    A picture frame, a gift box, a chess board and a pizza box are all objects that include square shapes:

    Squares Examples of squares StudySmarterExamples of objects with square shapes - Pixabay

    Properties of a square

    A square is a special case of a parallelogram, therefore it has the same properties that a parallelogram has, but it also has other unique properties that make it the shape it is. Read more about Parallelograms, if you need a recap.

    We can define the properties of a square as follows:

    • Like a parallelogram, a square has all its opposite sides parallel to each other. In the example below, ABCD and DABC.

    Squares Properties of a square - parallel opposite sides StudySmarterProperties of a square (parallel opposite sides) - StudySmarter Originals


    • All the sides of a square are congruent, which means that they measure the same. In the example below, all sides of the square measure 2 units, therefore they are all congruent ( ABBCCDDA ).
    Squares Properties of a square - congruent sides StudySmarterProperties of a square (congruent sides) - StudySmarter Originals
    • All four angles of a square are equal to 90° (right angles). In the image below, A, B, C and D all measure 90°.

    Squares Properties of a square - right angles StudySmarterProperties of a square (right angles) - StudySmarter Originals

    • The diagonals of a square are equal in length and bisect each other at an angle of 90°. In other words, the diagonals are perpendicular to each other, and intersect in their middle. We can notice in the figure below that the two diagonals AC and BD intersect at a point M, and are perpendicular to each other ACBD. Since ACBD, M is the middle of both diagonals, therefore AMMCBMMD.

    Squares Properties of a square - diagonals StudySmarterProperties of a square (diagonals) - StudySmarter Originals

    The length of the diagonal of a square, in relation to the length of its side, can be calculated using the Pythagoras theorem.

    Remember that, the Pythagoras theorem states that the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two other sides in a right triangle.

    Let's work out the length of the diagonal AC, which we will call d, given that the length of the side of the square equals s, as shown in the image below.

    Squares Length of diagonals of a square StudySmarterLength of the diagonal of a square - StudySmarter Originals

    Using the Pythagoras theorem, we get the following:

    d2=s2+s2 d2=2s2 d2=2s2d2=2·s2 d=2·s d=s2

    In a square, the length of a diagonal is equal to the length of the side multiplied by the square root of 2. Therefore, the length of both diagonals: AC and BD is equal to s2.

    s2

    • A diagonal of a square divides it into two congruent isosceles triangles. This property can be illustrated in the image below:

    Squares Two isosceles triangles inside of a square StudySmarterProperties of a square (congruent isosceles triangles) - StudySmarter Originals

    In the square illustrated in the image above, we can notice that the diagonal AC divided our square into two triangles: the green one ABC, and the blue one ADC. These two triangles are isosceles, since each triangle has two equal sides.

    Common properties between squares, rectangles, parallelograms and rhombuses

    In the diagram below, you can see that a square is a special case of a rectangle and a rhombus.

    Squares Relationships between quadrilaterals StudySmarterDiagram representing relationships between quadrilaterals - StudySmarter Originals

    In other words, all squares are rectangles and rhombuses. This is true since a square has all the properties of both a rectangle and a rhombus, along with some extra properties. A summary of the properties of quadrilaterals can be seen in the table below:

    Properties of a quadrilateral Rectangle Square ParallelogramRhombus
    All sides are equal
    Opposite sides are equal
    Opposite sides are parallel
    All angles are equal
    Opposite angles are equal
    Sum of two adjacent angles is 180°
    Diagonals bisect each other
    Diagonals bisect each other perpendicularly

    We can draw the following conclusions from the diagram and the table above:

    1. A square has all the properties of a rectangle and a rhombus;

    2. A square is a special case of a rectangle, but also a special case of a rhombus;

    3. A square, a rectangle and a rhombus have all the properties of a parallelogram;

    4. A square, a rectangle and a rhombus are all special cases of parallelograms;

    5. A square, a rectangle, a rhombus and a parallelogram are all special cases of quadrilaterals.

    Square formulas

    The formulas related to squares that you need to remember are the ones to calculate their perimeter and area. Let's see some examples of how to calculate both in the following sections.

    Perimeter of a square

    A two-dimensional item is any shape that can be put on a flat surface. The perimeter of any two-dimensional shape is the length of its boundary or sides.

    The square is a 2D shape with four equal sides and four 90° angles. Therefore, we can define its perimeter as follows.

    The perimeter of a square is the sum of the lengths of its four sides.

    In other words, if a square has 4 sides of length a, then its perimeter (P) can be calculated as follows:

    P=a+a+a+aP=4·a

    Let's explore this in more detail with some examples.

    If a square has its sides equal to 4 cm each. What will be its perimeter?

    Solution

    In this case, the length's side of the square a is equal to 4 cm. Its perimeter, or the sum of the lengths of all its sides, will be equal to:

    P=4·a =4·4 cmP=16 cm

    If the perimeter of a square is 20 m, then what is the length of the side of the square?

    Solution

    We need to find in this case the length of the side of a square: a.

    We know that the perimeter of the square is 20 m, and the formula of perimeter is 4 times the side's length a.

    P=4·a=20 m

    Now, we can solve for a:

    4·a4 = 20 m4 a= 5 m

    Area of a square

    In general, the area is defined as the region contained inside the boundaries of a flat object or 2D figure. In other words, the area is the amount of space occupied by the object. Specifically, the area of a square can be defined as follows:

    The area of a square refers to the space contained within the boundaries of its four sides.

    This measurement is given in square units, such as cm2, m2, etc.

    The formula to calculate the area of a square (A) is:

    A=a2,

    where a is the length of the square's side.

    Determine the area of a square with a side length of 1.20 m.

    Solution

    A=(1.20 m)2A=1.44 m2

    Find the area of a square if its perimeter is equal to 24 m.

    Solution

    First, we need to find the length of the side of a square a, to be able to calculate the area.

    We know that the perimeter of the square is 24 m, and the formula of perimeter is 4 times the side's length a, so we get the following:

    P=4·a=24 m

    Again, we solve for a:

    4.a4= 24 m4 a=6 m

    Then, the area will be equal to:

    A=a2 =6 m2A=36 m2

    Squares - Key takeaways

    • A square is a quadrilateral with all its sides and all its angles equal in measure.

    • A square, a rectangle and a rhombus are special cases of a parallelogram.

    • A square, a rectangle, a rhombus and a parallelogram are all special cases of a quadrilateral.

    • All four angles of a square are equal to 90°.
    • All four sides of the square are congruent or equal to each other.
    • The opposite sides of the square are parallel to each other.
    • The diagonals of the square bisect each other at 90°.
    • The perimeter of a square is equal to its side's length multiplied by four.
    • The area of a square is equal to its side's length, raised to the power of two.
    Frequently Asked Questions about Squares

    What is a square?

    A square is a quadrilateral with all its sides and all its angles equal in measure.

    Is a square a rectangle?

    A square is a special case of a rectangle, where all its sides are equal and its diagonal perpendicularly bisect each other.

    What is the area of a square?

    The area of a square is equal to its side's length raised to the power of 2. If the length of the square's side is equal to a, then its area is equal to a2.

    What is the perimeter of a 4 cm square?

    If a square has its side equal to 4cm, then its perimeter will be equal to 4 times 4 cm, which equals 16 cm.

    What are the 5 properties of a square?

    The 5 properties of a square are:

    1. A square has all its opposite sides parallel to each other.
    2. All four sides of a square are congruent or equal to each other.
    3. All four angles of a square are equal to 90° (right angles).
    4. The diagonals of a square are equal in length and bisect each other at 90°.
    5. A diagonal of a square divides it into two congruent isosceles triangles.
    Save Article

    Test your knowledge with multiple choice flashcards

    The diagonals of the square bisect each other at 90°. Is this true or false?

    The area of a square is equal to its side's length multiplied by four. Is this true or false?

    A square is a special case of a parallelogram. Is this true or false?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email