Rectangle

Mobile Features AB

When you look at an object, some questions come to mind and right there you give quick answers to a number of them. One of such questions answered is the shape of the object.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Rectangle Teachers

  • 7 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 01.06.2022
  • 7 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 01.06.2022
  • 7 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    In this article, we will explore the definition of a rectangle, its properties, the formulas for the perimeter and area of a rectangle, and examples of their application.

    Definition of rectangle

    A rectangle is a quadrilateral with four sides and four angles, where all the interior angles are right angles (90 degrees).

    A rectangle is a special case of a parallelogram. In other words, what makes a parallelogram become a rectangle is having its sides perpendicular to each other. This can be illustrated in the image below.

    Rectangle - StudySmarter Original

    We can notice that the opposite sides AB and CD are equal in size and parallel, the same for BC and AD. Moreover, the four sides are perpendicular to each other, thus, the quadrilateral is a rectangle.

    Rectangles Properties

    A rectangle being a parallelogram has all the properties of a parallelogram, but being a special case of it, it has its own unique properties that make it the geometric shape it is.

    To better understand the properties of a rectangle, let's consider the following rectangle ABCD in the image below.

    Rectangle ABCD - StudySmarter Original

    Property

    Example

    1. Opposite sides of a rectangle are equal and parallel.

    AB = CD, and AB is parallel to CD.

    Likewise, AD = BC, and AD is parallel to BC.

    2. All four angles in a rectangle are right angles.

    A=B=C=D=90°

    3. The sum of all interior angles of a rectangle is 360º.

    A+B+C+D=360°

    4. The diagonals of a rectangle are equal in length and bisect each other – they intersect each other in their middle.

    AC and BD are the diagonals of rectangle ABCD.

    AC = BD

    AC bisects BD and BD bisects AC.

    Construction of a rectangle

    For the construction of a rectangle, follow these steps.

    Step 1: Draw a straight line (R), then place 2 points A and B on the line.

    Step 2: Draw 2 perpendicular lines (S) and (T), passing by the two points A and B.

    Step 3: Locate two points C and D respectively on the two lines (S) and (T). However, C and D must be on the same level.

    The three steps mentioned earlier can be illustrated in the drawing below:

    Image resulting from steps 1, 2 and 3 - StudySmarter Original

    Step 4: Draw a straight line joining the two points C and D, as shown in the image below:

    Image resulting from step 4 - StudySmarter Original

    After reaching step 4, you will notice that the 4 points A, B, C, and D will form a rectangular shape.

    Formula for the area of a rectangle

    The area of a flat shape or the surface of an object can be defined in geometry as the space occupied by it.

    The area of a shape is usually measured considering the number of unit squares that cover the surface of the shape. Square centimeters, square feet, square inches, and other similar units are used to measure area.

    Given a rectangle with height h and base b, its area will be equal to:

    A=b×h.

    Find the area of the rectangular shape in the image below. Consider the square composed of 25 smaller squares the square of side 1 unit.

    We can notice that the height of the rectangle is equal to 2 unit squares, so its length is 2 units. Similarly, the base of the rectangle is 5 units. So the area of this rectangle can be calculated by multiplying the height by the base:

    A= 2 unit × 5 unit = 10 unit2

    Formula for the perimeter of a rectangle

    The perimeter of a shape is the distance around its outside.

    Consequently, the shape's perimeter is calculated by summing the lengths of all its sides. The same concept also applies to a rectangular shape. So, the total length of all the sides of a rectangle is known as the perimeter.

    A rectangle has its opposite sides equal to each other (one of its properties). Thus, the rectangle's perimeter of a rectangle with sides of lengths a, b, a, b is P = a + b + a + b, or P = 2a + 2b, or even P = 2 (a + b).

    So, we just need to calculate the lengths of two sides to find the perimeter of a rectangle since opposite sides of a rectangle are always equal.

    Find the perimeter and the area of the shape illustrated in the image below:

    Step 1: Try to identify the rectangle shapes. We can notice that 2 rectangles are present in the shape above. The rectangles identified are illustrated in the image below:

    The following properties are checked to make sure that the shapes identified are rectangles:

    1. The opposite sides are equal and parallel. For example, the first rectangle identified has the opposite sides parallel and equal to 8, and the other two opposite sites also parallel and equal to 3.
    2. All the angles are right angles, or in other words all the sides are perpendicular to each others.

    The Perimeter of the first rectangle PA can be calculated as follows:

    PA=(4+4+3+3)cm=14cm

    The Perimeter of the second rectangle PB can be calculated as follows:

    PB=(10+10+5+5)cm=30cm

    The Perimeter of the overall shape PAB:

    PAB=PA+PB=(14+30)cm=44cm

    The Area of the first rectangle AA can be calculated as follows:

    AA=height×base=4cm×3cm=12cm2

    The Area of the second rectangle AB can be calculated as follows:

    AB=height×base =5cm×10cm=50cm2

    The Area of the overall shape:

    AAB= AA+AB=12cm2+50cm2=62cm2

    Square and rectangle

    You can notice in the figure below that a square and a rectangle are both quadrilateral with four sides.

    A rectangle and a square - StudySmarter Original

    A square and a rectangle have similar properties as illustrated in the table below:

    PropertiesRectangle

    Square

    The four sides are equal

    X

    Opposite sides are equal

    Opposite sides are parallel

    Diagonals bisect each others

    Diagonals are perpendicular to each othersX

    All angles are equal

    Opposite angles are equal

    Sum of two adjacent angles is 180 degrees

    What Characterizes a Square as a Unique Rectangle?

    As illustrated in the table above, a square is a special type of rectangle for the following reasons:

    1. A square has all the properties of a rectangle.

    2. The only two differences between the square and the rectangle are that a square has its diagonal perpendicular to each other, and all its sides are equal.

    Rectangle - Key takeaways

    • A rectangle is also a quadrilateral with four sides and four angles.
    • All four angles in a rectangle are right angles.
    • Opposite sides in a rectangle are equal and parallel A rectangle's diagonals are equal and bisect each other's. They bisect each other means that they intersect each other in their middle.
    • Consecutive angles in a rectangle are supplementary. Their summation is equal to 180 degrees.
    • Given a rectangle with height equal to h and base equal to b, then its corresponding area will be equal to the multiplication of b by h.
    • A rectangle has its opposite sides equal to each other. Thus, the specified rectangle's perimeter is 2(a + b).
    • A square is a unique rectangle.
    Learn faster with the 0 flashcards about Rectangle

    Sign up for free to gain access to all our flashcards.

    Rectangle
    Frequently Asked Questions about Rectangle

    What are the examples of rectangles?

    Any four-sided shape with all its interior angles being right angles are an example of rectangles.

    How to find the area of a rectangle?

    To find the area of a rectangle, use the formula A = b × h, where b is the base and h is the height of the rectangle.

    How to find the perimeter of a rectangle?

    To find the perimeter of a rectangle, use the formula P = 2(a + b), where a and b are the lengths of the sides.

    Are all squares rectangles?

    Yes, all squares are rectangles.

    What is the formula for the area of the rectangle?

    The formula for the area of the rectangle is A = b × h.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 7 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email