Area of Rhombus

Mobile Features AB

If you saw a kite flying in the sky on a windy day, you'd probably say that the kite is shaped like a diamond. In Geometry, this diamond shape is called a rhombus: a geometric shape with four equal sides. A rhombus is both a parallelogram and a quadrilateral. More specifically, a rhombus is a four-sided plane figure (a quadrilateral), with opposite sides that are parallel to one another (a parallelogram). Its special characteristic of having four equal sides, however, is what sets rhombuses apart from other quadrilaterals.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Area of Rhombus Teachers

  • 6 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 26.05.2022
  • 6 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 26.05.2022
  • 6 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    A rhombus is a quadrilateral with all 4 sides equal, which makes it equilateral.

    Area of rhombus formula

    We have a specialized formula to find the area of a rhombus. Consider the following rhombus with diagonals of length d1 and d2.

    Area of rhombuses, Rhombus with diagonals d1 and d2, StudySmarterRhombus with diagonals d1 and d2 - Nilabhro Datta, StudySmarter Originals

    The area of the rhombus is given by the formula:

    Area = 12d1d2

    Since a rhombus is a special case of a parallelogram, the formula for finding the area of a parallelogram also applies to a rhombus and can be used to find the area of any rhombus as well. Consider the following parallelogram.

    Area of parallelogram rhombus - StudySmarterParallelogram with base b and height h - Nilabhro Datta, StudySmarter Originals

    The area of a parallelogram is given by the formula:

    Area of a parallelogram = b × h

    where b = base, h = height

    Now the value, b, is the length of the side AB, which is considered the base here. Conventionally, one of the longer sides of the parallelogram is taken to be the base. However, since all sides of a rhombus are equal, any side can be considered the base. Also the height or altitude would be the same no matter which side is taken as the base. In the parallelogram shown above, we can see that the sides are not all equal lengths, which means this parallelogram is not a rhombus.

    Note that for area we always use square units. So if we are using the SI units for example, the SI unit of length is meter (m), which means that the SI unit of area would be square meter (m²).

    Examples: Area of rhombus equation

    Let us look at some example problems related to the area of rhombuses.

    The area of rhombus WXYZ shown below is 138 in2. Find the length in inches of the diagonal XZ.

    Area Rhombus - StudySmarter

    Solution

    We know that for a rhombus:

    Area = 12d1d2

    Therefore:

    id="2494843" role="math" 138 in2= 12×23 in×d2d2=138 in2×223 in=12 in

    A rhombus has diagonals of lengths 6 m and 7 m. What is the area of the rhombus?

    Solution

    Area = 12d1d2=12×6 m×7 m=21 m2

    A rhombus with an area of 100 sq. units has an altitude of 8 units. What is the length of the sides of the rhombus.

    Solution

    Since a rhombus is a parallelogram, we can apply the formula for area of a parallelogram here, which is:

    Area = base × height

    We know that the area is 100 sq. units and height is 8 units.

    So,

    100 = base × 8

    ⇒ base = 100 ÷ 8

    = 12.5

    The length of the sides of the rhombus are 12.5 units.

    Special rhombus case: Area of a square

    You may have noticed that a square also meets the definition of a rhombus (a quadrilateral with 4 equal sides). A square is in fact a special case of a rhombus because all 4 sides of a square are equal. In addition, all 4 angles of a square are right angles.

    square special rhombus rectangle - StudySmarterA square - a special case of a rhombus and a rectangle - Nilabhro Datta, StudySmarter Originals

    As a rhombus, the area formula for rhombuses can be applied to squares. However, using the area formula for parallelograms is also an applicable method, since squares and rhombuses are both parallelograms too. Look at the above square and recall the formula for the area of a parallelogram:

    Area = base × height

    Let us consider the base as the side AB. Since the angles in a square are right angles, the height is considered to be the length of either of the sides, AD or BC. This means that the side of the base is the same as the size of the height, since all 4 sides of a square are equal. Thus, in the case of a square, the above formula can be reduced to:

    Area = side × side

    A square has an area of 64. Find the length of the sides and diagonals of the square.

    Solution

    Area = side × side

    ⇒ 64 = side2

    ⇒ side = 64 = 8

    The length of the sides of the square is 8.

    Since the square is also a rhombus, we can apply the formula for the area of a rhombus to it.

    Area = 12d1d264=12×diagonal2 (since the diagonals of a square are equal)diagonal = 64×2=11.31

    The diagonals of a square can also be calculated using the Pythagoras' Theorem when the side is known. For example, in the above example, the diagonal could have also been calculated using Pythagoras' Theorem after we found out that the lengths of the sides are 8.

    By Pythagoras' theorem,

    hypotenuse2=sum of the square of the sidesdiagonal2=side2+side2diagonal2=82+82=64+64=128diagonal=128=11.31

    Since the diagonals of a square are equal, this calculation gives you the length of both the diagonals.

    Area of rhombuses - Key takeaways

    • A four-sided plane figure is known as a quadrilateral. A rhombus is a special case of a quadrilateral. All 4 sides of a rhombus are equal.
    • Since a rhombus is a special case of a parallelogram, the formula for finding the area of a parallelogram also applies to a rhombus. The area of a parallelogram is given by the formula:

      Area = b × h

      where b = base, h = height

    • For a rhombus with diagonals of length d1 and d2:Area = 12d1d2

    • A square is a special case of a rhombus. The area of a square is given by: Area = side × side

    Learn faster with the 0 flashcards about Area of Rhombus

    Sign up for free to gain access to all our flashcards.

    Area of Rhombus
    Frequently Asked Questions about Area of Rhombus

    How to find the area of a rhombus?

    Consider a rhombus with diagonals of length d1 and d2

    Then the area of the rhombus is given by the formula, 

    Area = 0.5×d1d2

    What is the formula for finding the area of rhombus?

    Consider a rhombus with diagonals of length d1 and d2

    Then the area of the rhombus is given by the formula, 

    Area = 0.5×d1d2

    How do you find the area of rhombus when side and one diagonal is given?

    Using the formula, Area = 0.5×d1dsolve for the unknown diagonal.

    What are the properties of rhombus?

    • The diagonals of a rhombus are perpendicular to each other.
    • If the diagonals of a parallelogram are perpendicular, then it implies that the given parallelogram is a rhombus.
    • Each diagonal of a rhombus bisects a pair of opposite angles.
    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 6 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email