Binary Search

Mobile Features AB

Binary Search is a highly efficient algorithm for finding a target value within a sorted array, by repeatedly dividing the search interval in half until the target is found or the interval is empty. This method has a time complexity of O(log n), making it significantly faster than linear search, especially for large datasets. Understanding the binary search involves two key steps: continuously halving the dataset and comparing the midpoint to the target value to determine whether to search the left or right half.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Contents
Contents
  • Fact Checked Content
  • Last Updated: 12.12.2024
  • 10 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Binary Search Definition

    Binary Search is an efficient algorithm for finding an item from a sorted list of items. It works by repeatedly dividing the search interval in half and is much faster than a linear search.

    How Binary Search Works

    The process of Binary Search involves the following steps: 1. Begin with the middle element of the sorted array. 2. If the middle element is the target value, the search is successful. 3. If the target value is smaller than the middle element, repeat the search on the left half. 4. If the target value is larger, repeat the search on the right half.

    Binary Search is a searching algorithm used to find the position of a target value within a sorted array. Its complexity is \(\text{O}(\text{log} \ n)\).

    Consider a sorted array: [2, 5, 7, 10, 14, 18, 20, 23]. You want to find the number 14. 1. Start with the middle element, 10. 2. Since 14 is greater than 10, consider the right half of the array. 3. Check the middle of this new section, which is 18. 4. Since 14 is less than 18, consider the left half. 5. The middle element of this new section is 14. Search complete!

    Remember, Binary Search can only be applied to a sorted array or list.

    The efficiency of Binary Search is primarily due to its logarithmic time complexity \(\text{O}(\text{log} \ n)\). Here's why:

    • With each iteration, the range of possible locations is reduced by half.
    • In a list of size \ n \, at most \ \text{log}_2 \ n \ steps are required.
    • An array with 1,024 elements would only require up to 10 comparisons.
    This logarithmic reduction significantly speeds up searching, especially in large datasets. Consider implementing it in coding tasks with pre-sorted lists. For programming languages, the implementation of Binary Search can differ slightly. Here's a simple implementation in Python:
    def binary_search(arr, target):    left, right = 0, len(arr) - 1    while left <= right:        mid = (left + right) // 2        if arr[mid] == target:            return mid        elif arr[mid] < target:            left = mid + 1        else:            right = mid - 1    return -1

    Binary Search Algorithm

    Binary Search is a fundamental algorithm used extensively in Computer Science to search for a particular element in a sorted array. This method significantly reduces the time complexity compared to linear search methods.

    Steps of Binary Search Algorithm

    To perform a Binary Search, you will follow these steps:

    • Start with an initial search range covering the entire sorted array.
    • Calculate the middle position of the range.
    • Compare the middle element with the target value:
      • If it matches, you've found the target.
      • If the target value is less than the middle element, revise the search range to the left subarray.
      • If the target value is greater, revise to the right subarray.
    • Repeat the process until the range is empty or the target is found.
    This efficient reduction in search space results in a time complexity of \(\text{O}(\log n)\).

    Example: Imagine a sorted array of numbers

    3681214182125
    Suppose you need to find the value 14. Applying Binary Search:
    • Check the middle element (12) - it's less than 14.
    • Search the right half from 14 to 25.
    • Now, the middle of this section is 18 - it's greater than 14.
    • Narrow down to the left half (12 to 14).
    • The middle element is 14, which matches your target!

    Binary Search is optimal only for sorted data structures.

    Binary Search Technique Explanation

    In this explanation, you will understand why Binary Search is an effective way to search through sorted data. Splitting the array in half with each comparison ensures a logarithmic reduction in time complexity, noted as \(\text{O}(\log n)\). This makes it significantly faster than a linear search, particularly for large datasets. Key Points:

    • Every iteration halves the search domain.
    • Works only on sorted arrays.
    • Counts on dividing the search problem into smaller, more manageable subproblems.
    Given an array of size \ n \ with distinct elements, at most \(\log_2 n\) comparisons are required. For instance, with an array size of 1024, only 10 comparisons are needed. This property is derived from the repeated halving of the data set.

    To comprehend the Binary Search more thoroughly, consider how well it scales with larger input sizes. With every additional element in your sorted list doubling its size, you need just one more comparison, illustrating logarithmic growth. In mathematical terms, if the array length is \ n \ and you've made \ k \ comparisons, then the equation \(2^k \geq n\) holds true. This equation deduces that \(k = \lceil \log_2 n \rceil\), showing the logarithmic complexity. Another interesting concept is agnostic Binary Search, where the algorithm itself determines the order of the array, further enhancing its versatility. Here's a basic Python implementation of the Binary Search:

    def binary_search(arr, target):    left, right = 0, len(arr) - 1    while left <= right:        mid = left + (right - left) // 2        if arr[mid] == target:            return mid        elif arr[mid] < target:            left = mid + 1        else:            right = mid - 1    return -1
    This code illustrates a practical approach to implementing Binary Search in programming, maintaining efficiency and simplicity.

    Binary Search Time Complexity

    Understanding the time complexity of Binary Search is crucial in Computer Science. The efficiency of this algorithm is measured through the computational Big O notation, which describes the number of operations it performs in the worst-case scenario.

    How to Find Big O of Binary Search

    The Binary Search algorithm operates with a time complexity of \(\text{O}(\log n)\). This is because each step in the search reduces the problem size by half, leading logarithmic growth. Here’s a breakdown of how to determine this complexity: 1. You start with a sorted array containing \(n\) elements. 2. During each iteration, the problem size is halved. 3. After \(k\) divisions, you end with one element, meaning \(\frac{n}{2^k} = 1\). 4. Solving for \(k\), you get \(k = \log_2 n\). Thus, the complexity in the Big O notation is effectively \(\text{O}(\log n)\).

    Big O Notation is a mathematical representation to describe the limiting behavior of a function, often used to characterize algorithms in terms of their time or space complexity.

    Consider an array of size 16: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. 1. Begin Binary Search for the number 11. 2. First, compare middle element (8). 11 is greater, so discard left half. 3. New array section: [9, 10, 11, 12, 13, 14, 15, 16]. Again find middle (12). 4. Now, 11 is less, so discard right half. Remaining is [9, 10, 11]. 5. Check middle (10); 11 is greater, focus on right which is 11. 6. Hence located number 11 at index 10. Throughout, less than \(\log_2 16 = 4\) comparisons were needed.

    Binary Search is highly effective for large, sorted datasets when minimizing comparison operations is vital.

    Let’s delve deeper into what \(\log n\) signifies in Binary Search. Logarithms measure how many times you can divide the input size \(n\) by 2 before reaching 1. In Binary Search, this indicates how many steps it takes to isolate your target element from the sorted array.

    • If \(n = 1024\), then \(\log_2 1024 = 10\), suggesting 10 steps in the worst case.
    • This performance efficiency holds true regardless of the base, as all logarithmic complexities are equivalent up to a constant factor: \(\log_{10}\) or \(\log_{16}\).
    Here's how it works in Python, illustrating the effectiveness of the Binary Search approach:
    def binary_search(arr, target):    left, right = 0, len(arr) - 1    while left <= right:        mid = (left + right) // 2        if arr[mid] == target:            return mid        elif arr[mid] < target:            left = mid + 1        else:            right = mid - 1    return -1
    As seen in this code, the algorithm continually narrows down the range by making strategic comparisons. Exploring logarithmic behaviors in data-intensive scenarios demonstrates the power and limitations of this approach.

    Binary Search Exercise

    Practicing with Binary Search helps enhance your problem-solving skills and understanding of algorithms. This exercise will guide you through applying Binary Search to achieve efficient results in specific scenarios.

    Exercise Overview

    In this exercise, you'll implement the Binary Search algorithm to determine the position of a target integer within a sorted array. This process not only aids in reinforcing your grasp of sorting and searching algorithms but also demonstrates the application of binary logic in programming solutions.

    Consider a list:

    4815162342
    . Suppose you want to find the integer 16.Select the middle:
    • Compare 16 to the middle element, 15.
    • Since 16 is greater, focus on the right subarray.
    • The new middle element is 16, which matches the target!
    Thus, the element 16 is found in just two comparisons.
    def binary_search(arr, target):    left, right = 0, len(arr) - 1    while left <= right:        mid = (left + right) // 2        if arr[mid] == target:            return mid        elif arr[mid] < target:            left = mid + 1        else:            right = mid - 1    return -1

    Ensure your array is sorted before applying Binary Search to avoid incorrect results.

    Binary Search stands as a cornerstone in efficient algorithms, crucial for computer science studies. It leverages a divide-and-conquer strategy to pinpoint target data swiftly. This method scales exceptionally well with massive data sets, highlighting its importance in fields requiring quick data retrieval, such as databases and search engines. Beyond mere searching, Binary Search principles and its variations aid in solving complex problems like finding the square root, optimizing portfolio allocations, or even tuning AI model parameters. Here's what you can aim to achieve with further exercises:

    • Adapt and apply Binary Search in different languages such as Java or JavaScript.
    • Explore its implementation in diverse database queries.
    • Develop a comprehension of its integration with other algorithms, enhancing computational efficiency.
    The underlying simplicity of dividing and conquering is what makes Binary Search both powerful and accessible, a valuable asset in your programming toolkit.

    Binary Search - Key takeaways

    • Binary Search Definition: An efficient algorithm to find an item from a sorted list by repeatedly dividing the search interval in half.
    • Binary Search Algorithm: It involves checking the middle element of a sorted array and continuing the search in the left or right half depending on the target value's relation to the middle element.
    • Binary Search Time Complexity: Has a time complexity of O(log n) due to halving the problem size with each step.
    • Binary Search Technique: Works only on sorted arrays and reduces the search domain logarithmically with each iteration.
    • How to Find Big O of Binary Search: By solving the equation k = log2 n, where k is the number of divisions required to isolate the element.
    • Binary Search Exercise: Reinforces understanding by finding the position of a target value within a sorted array using binary logic.
    Learn faster with the 27 flashcards about Binary Search

    Sign up for free to gain access to all our flashcards.

    Binary Search
    Frequently Asked Questions about Binary Search
    How does binary search work?
    Binary search works by repeatedly dividing a sorted array in half. Starting with the middle element, if the target value is equal to the middle element, the search is complete. If the target is smaller, the search continues in the left half; if larger, in the right half. This process repeats until the element is found or the subarray size reduces to zero.
    What is the time complexity of binary search?
    The time complexity of binary search is O(log n), where n is the number of elements in the sorted array.
    What are the applications of binary search?
    Binary search is used in applications that require efficient searching in a sorted dataset, such as searching for elements in databases, finding boundaries in optimization problems, implementing dictionary data structures, and solving algorithmic problems related to search space reduction. It is also utilized in virtual address translation and software libraries for efficient query operations.
    What are the limitations of binary search?
    Binary search is limited to sorted and indexed lists or arrays, requiring O(log n) time complexity. It can't handle linked lists efficiently due to non-contiguous memory allocation. Binary search is ineffective with unsorted data and requires additional constraints for multi-dimensional or complex data structures.
    How can binary search be implemented in a recursive way?
    Binary search can be implemented recursively by defining a function that takes parameters for the array, the left and right indices, and the target value. The function checks if the middle element matches the target, adjusting the search range to the left or right half accordingly, and recursively calls itself until the target is found or the range is invalid.
    Save Article

    Test your knowledge with multiple choice flashcards

    What are the four main advantages of Binary Search in computer programming?

    What is Binary Search in Computer Science?

    What is the computational complexity of the Binary Search algorithm?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Computer Science Teachers

    • 10 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email