time series modeling

Mobile Features AB

Time series modeling is a statistical technique used to analyze and predict future data points based on historical data trends over time, making it essential for applications like stock market analysis, weather forecasting, and economic forecasting. It involves methods like ARIMA (AutoRegressive Integrated Moving Average), exponential smoothing, and seasonal decomposition to capture patterns such as trends, cycles, and seasonality in the data. Understanding time series modeling helps improve decision-making in real-world scenarios by providing actionable insights from temporal data.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team time series modeling Teachers

  • 20 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Sign up for free to save, edit & create flashcards.
Save Article Save Article
  • Fact Checked Content
  • Last Updated: 12.11.2024
  • 20 min reading time
Contents
Contents
  • Fact Checked Content
  • Last Updated: 12.11.2024
  • 20 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Understanding Time Series Concepts

    Time series modeling is a powerful tool used in business and economics to analyze and forecast data points collected or recorded at specified and equally spaced time intervals. Time series can be found in various fields such as finance, meteorology, and manufacturing.

    Time Series Basics

    Time series basics include understanding the nature of your data, its pattern, and its predictive potential. In time series analysis, you aim to model data such that you can make accurate future predictions based on historical values. The essential characteristic of time series data is that it is collected over time.

    Time Series refers to a sequence of data points typically measured at successive points in time spaced at uniform intervals.

    Key to time series is the chronological arrangement of data. This means each data point is inherently dependent on previously observed values. You will often hear terms like trend, seasonality, and cyclic patterns when describing a time series. Proper understanding of these concepts helps to identify the underlying patterns in the data, making it possible to develop models for forecasting.

    For example, consider the monthly sales data of a retail business. A time series analysis would help identify whether sales tend to rise or fall during specific months due to holiday seasons or other factors.

    Let's delve deeper into an important concept in time series modeling called autocorrelation. Autocorrelation measures the degree to which current values in a time series are related to past values. Formally, autocorrelation at lag \( k \) is calculated as: \[\text{Autocorrelation}(k) = \frac{\sum_{t=k+1}^{n}(X_t - \bar{X})(X_{t-k} - \bar{X})}{\sum_{t=1}^{n}(X_t - \bar{X})^2}\]Here, \( X_t \) is the value at time \( t \), and \( \bar{X} \) is the mean of the series.

    Components of Time Series Data

    Time series data is typically broken down into several components to better understand and model them. The main components of time series data include trend, seasonal, cyclic, and irregular components.

    Trend is the underlying long-term movement in the data.

    Seasonality refers to periodic fluctuations that occur in a time series data regularly, often annually.

    Cyclic Patterns occur when data exhibit rises and falls that are not of a fixed frequency.

    Irregular Component is the residual variation in the data after accounting for the above components.

    Understanding these components helps you in selecting and applying the right models for analysis. For instance, if a dataset exhibits a seasonal component, then you might consider augmenting your model to include seasonal adjustments.

    Consider a dataset of a small shop’s daily sales. The sales figures usually increase in December each year, signifying a seasonal effect due to Christmas, while a gradual increase in sales over years may represent a trend.

    Seasonality can often be visualized in plots where data will show predictable, repeating patterns over time.

    Importance of Time Series in Business

    The ability to accurately predict future events is critical in the business world, and this is where time series modeling becomes invaluable. By analyzing time series data, managers and analysts can make more informed decisions regarding budgeting, capacity planning, and resource allocation.

    Time series analysis enables businesses to:

    • Identify trends that can influence strategic decision-making.
    • Plan and schedule resources to meet future demands.
    • Forecast sales and financial outcomes for better financial planning.

    A unique feature of time series modeling in business is its application in financial markets. In finance, modeling and analyzing stock price movements help traders identify potential profitable trading opportunities. A common approach is to use moving averages, which smooth out price data by creating a constantly updated average price. Mathematically, the moving average for a period \( k \) can be represented as: \[MA_k = \frac{X_{t-k+1} + X_{t-k+2} + ... + X_t}{k}\]This formula helps in understanding the data trend by filtering out short-term fluctuations and highlighting longer-term trends or cycles.

    Time Series Modeling Explained

    Time series modeling is a method used to analyze data that is gathered over time. It involves statistical techniques that predict future points by understanding patterns in data collected at evenly spaced intervals. The approach is vital in various industries such as economics, finance, and meteorology where predicting future outcomes plays a critical role.

    What is Time Series Modeling?

    At its core, time series modeling involves analyzing data and predicting future outputs based on historical trends. The intrinsic value of time series lies in its sequential data, where each data point is dependent on its preceding values, offering insights into past patterns to provide future forecasts.

    Time Series Modeling is a statistical process that involves predicting future observations by examining the structure and characteristics of previously observed data over time.

    The major elements to consider within time series data include:

    • Trend: Long-term upward or downward movement in data.
    • Seasonality: Regular patterns or cycles in data appearing at consistent intervals.
    • Noise: Random variability in the data not explained by the model.
    Each of these components can be mathematically represented and analyzed using various equations and formulas.

    Imagine analyzing monthly sales figures for an online retail store. By applying time series modeling, you can identify if there is an upward trend in sales during holiday seasons, such as December, revealing seasonal patterns.

    A critical mathematical tool in time series analysis is the Autoregressive Moving Average (ARMA) model. The ARMA model is a combination of two components:1. **Autoregressive (AR) model**: Uses past values to predict future values. It can be represented as: \[ X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + ... + \phi_p X_{t-p} + \epsilon_t \] Where \( \phi \) represents parameters and \( \epsilon_t \) is white noise.2. **Moving Average (MA) model**: Uses past forecast errors to predict future values. It can be represented as: \[ X_t = \mu + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + ... + \theta_q \epsilon_{t-q} + \epsilon_t \] Where \( \theta \) represents parameters.

    Understanding the auto-correlation function (ACF) and partial auto-correlation function (PACF) graphically can help determine the parameters \( p \) and \( q \) for the ARMA model.

    Common Applications in Business

    Time series modeling plays a pivotal role in the business world. It allows organizations to forecast future trends, which is essential for strategic planning and decision-making. Here is how it is commonly applied in business scenarios:

    • Financial Forecasting: Banks and investors use time series to predict stock prices, interest rates, and economic indicators.
    • Demand Planning: Businesses use it to anticipate consumer demand and manage inventory accordingly.
    • Performance Measurement: Helps track and analyze the growth of various business metrics over time.
    These applications help businesses ensure they remain competitive and adequately prepared for future challenges.

    One particularly intriguing application is in the field of supply chain management. By employing time series forecasting, businesses can maintain optimal stock levels, reduce loss due to overproduction, and improve customer satisfaction. A popular method used is double exponential smoothing, which addresses trends in data. The formula is: Double Exponential Smoothing Formula: \[ \hat{y}_{t+1} = \alpha y_t + (1 - \alpha) [ \hat{y}_t + b_{t-1} ] \] Where \( \alpha \) is the smoothing factor and \( b_{t-1} \) is the trend component.

    Box-Jenkins methodology is a systematic approach to ARMA modeling, widely used in financial contexts for its accuracy.

    Benefits of Time Series Modeling

    The implementation of time series modeling in business comes with numerous benefits. Below are some key advantages:

    • Improved Decision Making: Forecasting based on historical data enables more informed strategic decisions.
    • Efficient Resource Allocation: Time series analysis helps predict resource needs and optimize utilization.
    • Enhanced Financial Planning: Organizations can anticipate financial needs and opportunities more accurately.
    These advantages make time series modeling a vital component of the analytical tools set for any business aiming to achieve sustained growth.

    Advanced time series analysis involves machine learning algorithms such as Long Short-Term Memory (LSTM) networks, which handle sequential data excellently. LSTM models can process data based on time intervals with lags of unknown duration, making them suitable for complex forecasting tasks in dynamic environments like predicting sales in volatile markets.LSTM Model is represented as:Let \( f(t) \) be the forget gate, \( i(t) \) input gate, \( C(t) \) candidate value, and \( o(t) \) output gate. Then: \[ f(t) = \sigma(W_f \, [h_{t-1}, x_t] + b_f) \] \[ i(t) = \sigma(W_i \, [h_{t-1}, x_t] + b_i) \] \[ \tilde{C}(t) = \tanh(W_c \, [h_{t-1}, x_t] + b_c) \] \[ C(t) = f(t) * C_{t-1} + i(t) * \tilde{C}(t) \] \[ o(t) = \sigma(W_o \, [h_{t-1}, x_t] + b_o) \] \[ h(t) = o(t) * \tanh(C(t)) \] This technique's flexibility and deeper understanding offer a considerable benefit to organizations looking to sharpen their analytical capabilities.

    Time Series Modeling Techniques

    Time series modeling techniques are essential tools for analyzing consistent and sequential data over time. They allow you to understand patterns, detect changes, and predict future data points, which is invaluable for various strategic applications in business, science, and technology.

    Overview of Techniques

    Understanding the techniques used in time series modeling begins with recognizing the different methods available for analyzing and forecasting data. Some of the fundamental techniques include decomposition, smoothing, and advanced modeling methods such as ARIMA. Each technique serves a specific purpose, catering to different aspects and components of time series data.

    Decomposition involves breaking down a time series into trend, seasonal, and residual components.

    Smoothing techniques are employed to reduce noise and highlight important patterns.

    For example, using the Holt-Winters method of smoothing allows you to account for both trend and seasonality in your sales data.

    A prominent method for analyzing time series data is the Autoregressive Integrated Moving Average (ARIMA) model. ARIMA combines differencing and the integration step to make non-stationary data stationary. Represented mathematically as: \[ARIMA(p, d, q)\] where \(p\) is the number of lag observations in the model (autoregressive part), \(d\) is degree of differencing (to make data stationary), and \(q\) is the size of the moving average window.

    Decomposition Techniques

    Decomposition techniques are used to break down a time series into its constituent components, making it easier to analyze and forecast. The primary components include trend, seasonality, and noise.

    Trend is the long-term progression of the time series values.

    Trend can be identified using a variety of methods such as moving average or fitting a regression line to the data.

    Seasonality captures periodic effects, which repeat over fixed periods of time such as days, weeks, months, or quarters.

    Consider quarterly sales data for a company. Decomposing the time series can reveal a repeating pattern in sales growth during the holiday seasons.

    The classical decomposition model can be expressed mathematically as:\[Y(t) = T(t) + S(t) + e(t)\] for additive models or \[Y(t) = T(t) \times S(t) \times e(t)\] for multiplicative models, where \(Y(t)\) is the value of the time series, \(T(t)\) is the trend, \(S(t)\) is the seasonal component, and \(e(t)\) is the error component.

    Smoothing Methods

    Smoothing methods are designed to remove noise from a time series to reveal underlying patterns. These methods provide better visualization and forecasting possibilities by promoting the trend and seasonality components of the data.

    Simple Moving Average (SMA) is a basic form of smoothing that calculates averages over a set number of periods.

    Implementing an SMA with a window size of 3 would mean calculating the average of every three successive data points in the series.

    Another popular smoothing technique is Exponential Smoothing, which applies decreasing weights to older data points in the series, with the simplest form being:\[S_t = \alpha Y_t + (1-\alpha)S_{t-1}\]where \(S_t\) is the smoothed value at time \(t\), \(\alpha\) is the smoothing parameter (0 < \(\alpha\) < 1), and \(Y_t\) is the observed value.

    A more advanced form is Holt’s Linear Trend Model, which extends exponential smoothing to capture trends. It uses two equations:\[S_t = \alpha Y_t + (1-\alpha)(S_{t-1} + b_{t-1})\]\[b_t = \beta (S_t - S_{t-1}) + (1-\beta)b_{t-1}\]where \(b_t\) is a trend estimate and \(\beta\) is the trend smoothing parameter.

    Advanced Modeling Techniques

    For businesses dealing with complex datasets, advanced modeling techniques serve as more sophisticated tools for time series analysis. These include approaches like ARIMA, Seasonal Decomposition of Time Series (STL), and machine learning models such as LSTM neural networks.

    Autoregressive Integrated Moving Average (ARIMA) is used for understanding and predicting future points in a time series by blending autoregression, integration (differencing), and moving average components.

    An example of ARIMA usage is in predicting national GDP, where periodic past data is used to forecast economic downturns or periods of growth.

    In machine learning, the Long Short-Term Memory (LSTM) network is highly effective for large sequence prediction problems. Using LSTM, time series data can be structured to:1. Remember significant information over long periods.2. Forget insignificant or noise data.3. Output meaningful data sequences based on learned patterns.The mathematical underpinning of LSTM involves several gated units: \[f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)\]\[i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)\]\[\tilde{C}_t = tanh(W_C[h_{t-1}, x_t] + b_C)\]\[C_t = f_t \times C_{t-1} + i_t \times \tilde{C}_t\]\[o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)\]\[h_t = o_t \times tanh(C_t)\]Where \(f_t\), \(i_t\), \(\tilde{C}_t\), \(C_t\), \(o_t\), and \(h_t\) are forget, input, cell state proposals, current cell, output, and hidden states respectively.

    Autoregressive Time Series Modeling

    Autoregressive time series modeling is a fundamental approach in the forecasting domain that examines the dependence of an observation on previous instances in the series. This modeling technique is particularly useful in forecasting financial markets, sales, economic indicators, and more, providing a statistical framework to understand the intricacies of sequential data.

    Introduction to Autoregressive Models

    Introducing you to Autoregressive (AR) models, which are a type of statistical analysis used extensively in time series forecasting. The AR model forecasts future points by regressing the variable on its previous observations. This implies that the current observation depends linearly on its past values.

    Autoregressive Model (AR): It is defined by the equation \[X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + ... + \phi_p X_{t-p} + \epsilon_t\] where:

    • \(X_t\) is the variable at time \(t\)
    • \(c\) is a constant
    • \(\phi\) is the coefficient of the lagged variable
    • \(p\) is the order of the AR model
    • \(\epsilon_t\) is white noise

    For example, let’s say you are analyzing daily temperatures. In an AR(1) model, the temperature on a given day is calculated using the temperature of the previous day. If \(\phi_1\) is 0.8 and \(c\) is 15, then: \[X_t = 15 + 0.8 \times X_{t-1} + \epsilon_t\] where \(\epsilon_t\) is the random noise.

    The order of the AR model (\(p\)) tells you how many preceding values are used to predict the current observation.

    To further understand AR models, Autocorrelation Function (ACF) is analyzed, which measures the correlation between observations of a time series separated by \(k\) lags. Mathematically represented by:\[\text{ACF}(k) = \frac{\sum_{t=k+1}^{n}(X_t - \bar{X})(X_{t-k} - \bar{X})}{\sum_{t=1}^{n}(X_t - \bar{X})^2}\]where \(\bar{X}\) is the mean of the observed data. ACF helps in the identification of the AR model order.

    How Autoregressive Models Work

    Understanding how autoregressive models work enables leveraging its forecasting abilities to its fullest. The working principle involves the lagged values of a time series and how these values parametrically influence future outcomes.

    Key Steps in Autoregressive Modeling:

    • Stationarity: Ensure the data is stationary by checking the mean, variance, and autocorrelation. Non-stationary data often requires differencing.
    • Model Identification: Use PACF (Partial Autocorrelation Function) to identify the order \(p\) of the AR model. PACF measures the partial correlation of a series with its \(k\)-th lag.
    • Model Estimation: Use techniques like least squares to estimate the AR parameters \(\phi\).
    • Diagnostic Checking: Validate the model by using residuals analysis. Residuals should behave like white noise.

    Take a series of monthly sales data. After transforming the data to be stationary, you observe that the PACF cuts off after the second lag. This suggests that an AR(2) model could be a good fit. You then estimate \(\phi_1\) and \(\phi_2\) using your chosen statistical software.

    A deep dive into model optimization reveals using Akaike Information Criterion (AIC) to select the best model fit. The AIC value aids in balancing the trade-off between model complexity and goodness of fit. Optimal AR model minimizes the AIC, expressed as:\[\text{AIC} = 2k - 2\ln(L)\]where \(k\) is the number of parameters and \(L\) is the likelihood of the fitted model.

    Advantages and Limitations

    Autoregressive models offer numerous advantages but are not without limitations. Understanding both aspects helps in effectively utilizing the technique.

    Advantages of AR Models:

    Limitations of AR Models:

    • Data Stationarity: AR models require stationary data; non-stationary data must be transformed appropriately.
    • Limited Scope: Based on linear assumptions, may perform poorly with complex non-linear patterns.
    • Overfitting: Danger of overfitting with high order \(p\), learning noise instead of signal.

    Utilize AR models for datasets where there is a strong temporal correlation but consider supplementary models for better accuracy in non-linear data patterns.

    Time Series Forecasting Models

    In the realm of data analysis, time series forecasting models play a crucial role in predicting future data points based on historical information. These models are extensively used in fields such as finance, weather forecasting, and sales analysis to make data-driven decisions.

    Different Types of Forecasting Models

    There are various types of forecasting models employed for time series analysis. Each model has distinct characteristics suited to particular types of data patterns. Understanding these models is crucial for their effective application.

    Exponential Smoothing: A set of forecasting models that apply decreasing weights to past observations. They are suited for data with trends or seasonality.

    ARIMA (Autoregressive Integrated Moving Average): Combines autoregression, differencing, and moving average elements. Suitable for non-stationary data without clear seasonal patterns.

    Consider a retail company employing the ARIMA model to predict next quarter's sales figures based on trends and past demand fluctuations.

    A well-known method within exponential smoothing is the Holt-Winters method, which can be expressed as:Level Equation: \[L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + T_{t-1})\]Trend Equation: \[T_t = \beta (L_t - L_{t-1}) + (1 - \beta)T_{t-1}\]Seasonal Equation: \[S_t = \gamma (Y_t / L_t) + (1 - \gamma)S_{t-s}\]where \(\alpha\), \(\beta\), and \(\gamma\) are smoothing parameters, and \(s\) is the season length.

    The forecasting method you choose should match the data's behavior—consider trend and seasonal components carefully.

    Selecting the Right Model

    Choosing the appropriate forecasting model is critical for accurate predictions. The selection process relies on understanding your data's characteristics and the model's capabilities.

    Selection Criteria:

    • Data Stationarity: For non-stationary time series, utilize models like ARIMA.
    • Presence of Seasonality: Apply Holt-Winters or seasonal decomposition techniques.
    • Model Complexity: Balance training data volume and model intricacy.
    • Past Performance: Examine historical model accuracy with similar datasets.

    An operational manager wishes to forecast energy consumption for an industrial plant. Data exhibits daily cycles, suggesting the use of a model with seasonality, such as Seasonal ARIMA (SARIMA).

    Mathematical rigor in selecting models can be achieved using criteria such as Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC), both helping to evaluate model fit and complexity. A lower BIC/AIC score generally indicates a better model. The formula for AIC is:\[\text{AIC} = 2k - 2\ln(L)\] where \(k\) is the number of estimated parameters and \(L\) is the maximized value of the likelihood function.

    Evaluating Model Performance

    Assessing model performance is essential in ensuring forecasts are reliable and actionable. Evaluation involves comparing model predictions with actual outcomes and determining forecasting accuracy.

    Performance Metrics:

    • Mean Absolute Error (MAE): Average absolute differences between predicted and observed values, easy to interpret.
    • Mean Squared Error (MSE): Mean of the squares of the differences, sensitive to large errors.
    • Root Mean Squared Error (RMSE): Square root of MSE, useful for comparison purposes.
    • Mean Absolute Percentage Error (MAPE): Expresses forecast accuracy as a percentage, allowing easy interpretation across varying data scales.

    Evaluate a model's prediction accuracy using MAE for a dataset of monthly passenger counts. A lower MAE indicates better predictive performance relative to other models.

    Advanced evaluation includes back-testing, where historical data is split into training and testing sets: \[\text{Split Ratio = } \frac{\text{Training Set Size}}{\text{Total Set Size}}\]This method provides an unbiased appraisal of real-world forecasting performance and aids in refining model parameters.

    time series modeling - Key takeaways

    • Time Series Modeling: A statistical process for predicting future observations based on previously observed data over time, useful in economics, finance, and meteorology.
    • Time Series Components: Trend, seasonality, cyclic patterns, and irregular components that help in identifying underlying data patterns for accurate forecasting.
    • Autoregressive Time Series Modeling: Invests in the relationship between an observation and its past values, useful for examining sequential data patterns.
    • Autocorrelation: Measures the degree to which current values in a time series are related to past values, critical in autoregressive models.
    • Time Series Forecasting Models: Techniques like ARIMA and Exponential Smoothing used to predict future data points based on historical information.
    • Time Series Modeling Techniques: Includes decomposition, smoothing, and models like ARIMA to handle patterns and predict future data points.
    Frequently Asked Questions about time series modeling
    What are the common methods used in time series modeling?
    Common methods used in time series modeling include Autoregressive Integrated Moving Average (ARIMA), Seasonal Decomposition of Time Series (STL), Exponential Smoothing State Space Model (ETS), Vector Autoregression (VAR), and Machine Learning models such as Long Short-Term Memory (LSTM) networks.
    How can time series models be used for forecasting in business?
    Time series models in business forecasting analyze historical data to identify patterns, trends, and seasonal variations, which help predict future values. These models, like ARIMA or exponential smoothing, provide insights for making informed decisions on inventory management, financial planning, and demand forecasting, thereby optimizing operations and strategic initiatives.
    What are the challenges in implementing time series models in business applications?
    Challenges in implementing time series models in business applications include handling missing data, accounting for seasonality and trends, managing data stationarity, and adapting to structural changes. Additionally, ensuring model accuracy, dealing with noisy data, and integrating models with existing systems can pose significant difficulties.
    What is the importance of stationarity in time series modeling?
    Stationarity is important in time series modeling as it ensures consistent statistical properties like mean, variance, and autocorrelation over time, enabling effective model training. It facilitates accurate prediction and inference by simplifying the data structure and assumptions for many forecasting models.
    What is the difference between time series modeling and traditional regression analysis?
    Time series modeling focuses on predicting future values based on past observations and accounts for temporal dependencies like trends and seasonality. In contrast, traditional regression analysis examines relationships between independent and dependent variables without specific consideration for temporal order or patterns in the data.
    Save Article

    Test your knowledge with multiple choice flashcards

    What is a limitation of AR models?

    What is a common method used in exponential smoothing for handling trends and seasonality?

    What is the purpose of decomposition in time series analysis?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Business Studies Teachers

    • 20 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email